• Title/Summary/Keyword: Gas flow sensors

Search Result 82, Processing Time 0.024 seconds

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

A ultrasonic technique for measuring gas temperature (기체온도 측정을 위한 초음파 계측)

  • Choi, Y.;Yoon, C. H.;Jeon, H. S.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.150-160
    • /
    • 1998
  • Measuring temperature with ultrasonic wave apparatus is desirable in the case of both below 300$0^{\circ}C$ and ideal gas because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower, the variation of temperature is observed in accordance with diverse flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow till 10$0^{\circ}C$. The length changed in the position of ultrasonic sensors is considered. Also, the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study, it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity, and that there is just a little influence of facing angles.

  • PDF

A Study on Ultrasonic Technique for Measuring Gas Temperature (기체온도 측정을 위한 초음파 계측에 관한 연구)

  • Yoon, Cheon Han;Choi, Young;Jeon, Heung Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

Low temperature-operating NiO-CoO butane gas sensors

  • Jung, Dong-Ho;Choi, Soon-Don;Min, Bong-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • $NiO,\;Cu_2O,\;Mn_2O_3$ and $Cr_2O_3$ as p-type semiconductors were added in CoO with 15 wt.% ethylene glycol binder and measured the butane gas sensing characteristics. The highest sensitivity is obtained for the NiO-CoO sensors. CoO-20 at.% NiO sensor with 15 wt.% ethylene glycol binder sintered at $1100^{\circ}C$ for 24 h exhibits high sensitivity of 90 % to 5000 ppm butane gas at the sensor temperature of $250^{\circ}C$, compared to low sensitivities at the low operating temperature for commercial sensors. Response and recovery times are, respectively, within few seconds and 1min in the static flow system, indicating rapid adsorption and desorption of butane gas on sensor surface even at this low temperature.

The Fabrication of Flow Sensors Using Pt Micro Heater (백금 미세발열체를 이용한 유량센서의 제작)

  • Noh, Sang-Soo;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.609-611
    • /
    • 1997
  • Pt thin films flow sensors were fabricated by using aluminum oxide films as medium layer and their characteristics were investigated after annealing at $600^{\circ}C$ for 60min. Aluminum oxide improved adhesion of Pt thin films to $SiO_2$ layer without any chemical reactions to Pt thin films under high annealing temperatures. Output voltages increased as gas flow rate and gas conductivity increased because heat loss of heater, which was integrated with a sensing resistor in the flow sensor, increased. Output voltage of flow sensor fabricated on membrane structure was 101mV at $O_2$ flow rate of 2000sccm, heating power of 0.8W while flow sensor fabricated on Si substrate without membrane had output voltage of 78mV under the same conditions.

  • PDF

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

Fabrication on Microheater Flow Sensors Using Membrane Structure and Its Characteristics (맴브레인 구조를 이용한 미세발열체형 유량센서의 제작과 그 특성)

  • 정귀상;노상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.996-1000
    • /
    • 1998
  • This paper describes the characteristics of Pt microheater using aluminum oxide films as medium layer and its application to flow sensors. Pt microheater have heating temperature of $390^{\circ}C$ at heating power of 1.2 W. Output voltages of flow sensors which were fabricated by integrating sensing-part with heating-part increase as gas flow rate and its conductivity increase. At $O_2$ flow rate of 2000 sccm, heating power of 0.8 W, output voltage of flow sensor is 101 mV under bridge-applied voltage of 5 V.

  • PDF

Sensing characteristics of Polypyrrole-based methanol sensors preparedbyin-situ vapor state polymerization

  • Linshu Jiang;Jun, Hee-Kwon;Hoh, Yong-Su;Lee, Duk-Dong;Huh, Jeung-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.137-137
    • /
    • 2003
  • Conducting PPy/PVA composite and pure PPy gas sensors were prepared by in-situ vaporstate polymerization method in a vaporization chamber under N2 condition, by exposing the pre-coated electrode with PVA/FeC13 to distilled pyrrole monomer. The various electrical sensing behaviors of both types of sensors were systematically investigated by a flow measuring system including mass flow controller (MFC) and bubbling bottle. The FT-Raman spectroscopy of vapor state polymerized PPy was identical to that of chemically polymerized PPy, confirming the same chemical structure. Both types of sensors had positive sensitivity when exposed to methanol gas. The sensitivity varied linearly with gas concentration in the range of 50ppm to 1059ppm. The detection limit of PPy/PVA sensor was believed to be as low as 10ppm. The sensitivity of PPy/PVA composite sensor was higher than that of pure PPy sensor. Both the response time and recovery time of PPy/PVA composite sensors were longer than those of pure PPy sensors. The thickness of the sensing film affected the sensitivity this way that the sensor having thinner film had higher sensitivity, indicating that the resistance of polymer film involved in the sensing behavior was bulk resistance rather than surface resistance. The reproducibility of PPy/PVA composite sensor was excellent during eight on-off cycles by switching between N2 and 3000ppm methanol gas. The sensitivity of PPy/PVA composite sensor was only maintained for two weeks, while the sensitivity of pure PPy sensor was maintained over two months.

  • PDF