• Title/Summary/Keyword: Gas flow rate

Search Result 2,390, Processing Time 0.032 seconds

Performance Characteristics of the 300 MW Integrated Gasification Combined Cycle Plant according to Ambient Temperature (대기온도에 따른 300 MW 석탄가스화복합발전 성능특성)

  • Kim, Young-Mook;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • In this study, the output and thermal efficiency of Taean Integrated Gasification Combined Cycle Plant were calculated by using the manufacturer's basic design data and the performance correction factor for each atmospheric temperature, and the actual performance was measured at summer and winter representative points. The results were compared with the calculated values to verify their validity. The thermal efficiency is the highest at around $15^{\circ}C$ and lower at lower temperature and higher temperature. This is similar to that of natural gas Combined Cycle Power Plant, but the thermal efficiency has drastically decreased due to the increase of power consumption of the air separation unit at relatively high temperature. The output is highest in the range of 5 to $15^{\circ}C$, and is kept almost constant at below $5^{\circ}C$ and declines above $15^{\circ}C$. The reason why the output does not increase at low temperatures is that the torque limit of the shaft is activated by the increase of the flow rate due to the nitrogen injection of the gas turbine combustor. In order to improve the performance in the future, efforts should be made to improve the power generation output and to reduce the power consumption of the air separation unit in summer.

  • PDF

Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube (Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석)

  • Seo, Yong Soo;Lee, Jea Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.244-252
    • /
    • 2010
  • The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triple-bed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, $C_1{\sim}C_5$ of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Comparison of the CO2 Emission Estimation Methods in a LNG Power Plant Based on the Mass Balance Approach (물질수지 방법을 고려한 액화천연가스 발전소에서의 온실기체 배출량 산정 방법 비교)

  • Kim, Hee-Jin;Yeo, Min Ju;Kim, Yong Pyo;Jang, Geon Woo;Shin, Won Geun;Lee, Myung Hwoon;Choi, Hyung Wook
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.235-244
    • /
    • 2013
  • Carbon dioxide emission estimation methods consist of four tiers according to the IPCC guideline. In this study, estimated results by tier 3 and tier 4 were compared with the theoretically calculated $CO_2$ emissions based on the mass balance approach for a gas fired power plant between March and May 2011. It was found that the relative differences were upto 17% between the measured emissions by tier 4 and theoretically estimated emissions, while the results of tier 3 were similar to those from theoretically estimated ones. The comparisons suggested the possibility of misestimation due to replacing missing, abnormal, or invalid data in continuous emissions monitoring system. When using only the data without those missing, abnormal, or invalid data, the relative differences decreased somewhat but still showed consistent differences depending on the stack. It is suggested that this differences might be due to the accuracy of the measurement instruments for the tier 4, especially, for the flow rate measurement instrument.

Cesium Ions Adsorption of Activated Carbon Treated by Oxygen Plasma (산소 플라즈마 처리된 활성탄소의 세슘 이온 흡착)

  • Ha, Seongmin;Kwak, Cheol Hwan;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • The effect of introducing oxygen functional groups by oxygen plasma treatment of activated carbon on adsorption properties of cesium ions was investigated. During the oxygen plasma treatment, the frequency, power, and oxygen gas flow rates were fixed at 100 kHz, 80 W, and 60 sccm, respectively, while the reaction time was varied. Under the experimental conditions, the amount of cesium ion adsorption increased as the content of oxygen groups on C-O-C and O=C-O bonds increased when the reaction time with oxygen gas was 10 minutes. However, when the reaction time increased to 15 minutes, the oxygen functional group content decreased resulting in the decrease of the adsorbed cesium ion amount. On the other hand, unlike the oxygen content of the surface-treated activated carbon, the specific surface area and pore properties were hardly affected by the oxygen plasma reaction time. As a result, the oxygen plasma-treated activated carbon improved the cesium ion removal rate by up to 97.3% compared to that of the untreated activated carbon. This is considered to be due to the content of oxygen groups on C-O-C and O=C-O bonds introduced on the surface of the activated carbon through oxygen plasma treatment.

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

Energy Demand/Supply Prediction and Simulator UI Design for Energy Efficiency in the Industrial Complex (산업단지 에너지 효율화를 위한 에너지 수요/공급 예측 및 시뮬레이터 UI 설계)

  • Hyungah Lee;Jong-hyeok Park;Woojin Cho;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.693-700
    • /
    • 2024
  • As of the end of March 2022, the total area of domestic industrial complexes is 606 km2, which is only about 0.6% of the total land area. However, as of 2018, the annual energy consumption of domestic industrial complexes is 110,866.1 thousand TOE, accounting for 53.5% of the country's total energy consumption and 83.1% of the entire industrial sector energy consumption. In addition, industrial complexes have a significant impact on the environment, accounting for 45.1% of the country's total greenhouse gas emissions and 76.8% of industrial sector greenhouse gas emissions. Under this background, in this study, in order to contribute to the energy efficiency of industrial complexes, a prediction study on energy demand and supply for an industrial complex in Korea using machine learning was conducted. In addition, a simulator UI screen was designed to more efficiently convey information on energy demand/supply prediction results and energy consumption status. Among the machine learning algorithms, Multi-Layer Perceptron (MLP) was used, and Bayesian Optimization was applied as an optimization technique for the prediction model. The energy prediction model for the industrial complex built in this study showed a prediction accuracy of 87.90% for compressed air demand and 99.54% for the flow rate available for the public air compressor.

Correlation of Tracheal Cross-sectional Area with Parameters of Pulmonary Function in COPD (만성 폐쇄성 폐질환에서 기관의 단면적과 폐기능지표와의 상관관계)

  • Lee, Chan-Ju;Lee, Jae-Ho;Song, Jae-Woo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Chung, Hee-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 1999
  • Background : Maximal expiratory flow rate is determined by the size of airway, elastic recoil pressure and the collapsibility of airway in the lung. The obstruction of expiratory flow is one of the major functional impairments of emphysema, which represents COPD. Nevertheless, expiratory narrowing of upper airway may be recruited as a mechanism for minimizing airway collapse, and maintaining lung volume and hyperinflation by an endogenous positive end-expiratory pressure in patients with airflow obstruction. We investigated the physiologic role of trachea in respiration in emphysema. Method : We included 20 patients diagnosed as emphysema by radiologic and physiologic criteria from January to August in 1997 at Seoul Municipal Boramae Hospital. Chest roentgenogram, high resolution computed tomography(HRCT), and pulmonary function tests including arterial blood gas analysis and body plethysmography were taken from each patient. Cross-sectional area of trachea was measured according to the respiratory cycle on the level of aortic arch by HRCT and calibrated with body surface area. We compared this corrected area with such parameters of pulmonary function tests as $PaCO_2$, $PaO_2$, airway resistance, lung compliance and so on. Results : Expiratory cross-sectional area of trachea had significant correlation with $PaCO_2$ (r=-0.61, p<0.05), $PaO_2$ (r=0.6, p<0.05), and minute ventilation (r=0.73, p<0.05), but inspiratory cross-sectional area did not (r=-0.22, p>0.05 with $PaCO_2$, r=0.26, p>0.05 with $PaO_2$, and r=0.44, p>0.05 with minute ventilation). Minute ventilation had significant correlation with tidal volume (r=0.45, p<0.05), but it had no significant correlation with respiratory frequency (r=-0.31, p>0.05). Cross-sectional area of trachea had no significant correlation with other parameters of pulmonary function including $FEV_1$, FVC, $FEV_1$/FVC, peak expiratory flow, residual volume, diffusing capacity, airway resistance, and lung compliance, whether the area was expiratory or inspiratory. Conclusion : Cross-sectional area of trachea narrowed during expiration in emphysema, and its expiratory area had significant correlation with $PaCO_2$, $PaO_2$, and minute ventilation.

  • PDF

Experimental Studies on Extracorporeal Circulation by Sarns Heart-Lung Machine with Total Prime of Hartman's Solution (Sarns 심폐기의 혈희석 체외순환에 관한 실험적 연구)

  • 김근호
    • Journal of Chest Surgery
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1975
  • Total body perfusion using Sarns Heart-Lung-Machine, five head pump motor system with Travenol disposable bubble oxygenator was attempted in the dogs by the hemodilution method with total prime of buffered Hartman`s solution under moderate hypothermia. The first of all, the functions of Sarns Heart-Lung-Machine and effects of the hemodilution perfusion by buffered Hartman`s solution was studied. At the same time the changes of pressure of artery and vein, gas contents of the blood, and influence on the blood pictures were observed before, during, and after perfusion in 1-2 days. Hemodilution rates were the ranges of 85.0ml/kg to 97.3ml/kg and perfusion flow rates were maintained with the average 80. 5ml/kg/min [the ranges of 73.3ml/kg/min to 92.8ml/kg/min]. Hypothermia was employed between $35^{\circ}C$ and $31^{\circ} of the esophageal temperature. The total body perfusion was continued for 50-60 minutes. In the total cardiopulmonary bypass, atriotomy, ventriculotomy, and atrioventriculotomy were performed respectively. Arterial pressure was ranged approximately between 50 mmHg and 140 mmHg, but generally, it was maintained over 75 mmHg. Venous pressure was measured between 3.8 cm$H_2O$ and 16.0 cm$H_2O$. Optimum oxygenation could be achieved when oxygen flow into the oxygenator was maintained approximately at 5. 5L/min. In this way, the $pO_2$, $pCO_2$, and oxygen saturation were measured before, during, and afterperfusion in 1-2 days. The $pCO_2$ ranged approximately between 26.0 mmHg and 38.5 mmHg, but generally, it was maintained in the average 30.9-32.5mmHg. The $pO_2$ was ranged between 73.0mmHg and 332.2 mmHg, but it was maintained in the average 103.0-219.0 mmHg. Oxygen saturation was measured over 95. 0% during and after extracorporeal circulation respectively. Erythrocyte count, hemoglobin, hematocrit, and leucocyte count were decreased to 49.2%, 49.0%, 49.4%, and 21. 1% of the preoperative value during extracorporeal circulation respectively and these reductions were not recovered until 1-2 days after perfusion. These. resulted from relatively high degree of hemodilution rate and operative bleeding during these experimental studies. The platelets count was also decreased about to 71% during perfusion, on the contrary, it was increased progressively after perfusion and in 1-21 days after perfusion, the value was returned to preoperative contro1 level. Three dogs were all recovered after extracorporeal circulation.

  • PDF