• Title/Summary/Keyword: Gas engine cogeneration system

Search Result 25, Processing Time 0.024 seconds

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

Analysis of a small steam injected gas turbine system with heat recovery (열회수를 고려한 소형 증기분사 가스터빈 시스템 해석)

  • Kim, Dong-Seop;Jo, Mun-Gi;Go, Sang-Geun;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

Pressure Drop of a Gasket Sealed Plate Type Heat Exchanger upon its Operating Conditions (Gasket 방식 판형 열교환기의 고.저온부 유량 및 압력차에 따른 압력강하 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.189-194
    • /
    • 2009
  • In a gas engine based cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is often recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. Depending on the operating conditions of engine and heat recovery system, there should be imbalance in the flow rate and supply pressure between engine and heat recovery side of the heat exchanger. The imbalance cause the deformation of the plate, which affects the pressure drop characteristics. In the present study, the pressure drop inside the heat exchanger has been investigated in a 1/5 scaled test rig and compare with the experimental correlations, which are used for the design.

  • PDF

DEVELOPMENT OF HIGH EFFICIENCY COGENERATION SYSTEM USING BIOGAS FOR THE LOWER POLLUTION OF THE ENVIRONMENTAL

  • Park, J.S.;Ishii, K.;Terao, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.670-675
    • /
    • 2000
  • The purpose of the study is development and investigation about basic performance of the system operation on a dual fueled cogeneration system(CGS), which is operated with biogas and gas oil. As often seen in dual fueled CGS performance, the electric generating efficiency was obtained about 26□. Methane contained in the biogas could not bum completely at lower load, and it was discharged into exhaust gas. Considerable amount of the methane burned in the exhaust pipe, and the heat recovery ratio was 42□ on heat balance. As a result, the total heat efficiency, which is a summation of generating efficiency and heat recovery efficiency reached to about 70□. The supply of biogas into the engine reduces smoke density and NOx concentration in exhaust gas. At lower load, methane burned slowly and large portion of it was discharged without burning. Therefore the measures are desirable that promotes combustion of methane at lower load.

  • PDF

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.

Development of Gasoline Engine Renewal CNG Generator and a Study on Exhaust Gas Characteristics of Equivalent Diesel Engine (가솔린 엔진개조 CNG 발전기 개발과 동급 디젤엔진의 배출가스 특성 연구)

  • Lee, Jung-Cheon;Kim, Ki-Ho;Lee, Jung-Min;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.74-79
    • /
    • 2018
  • Compressed natural gas has a high octane number and low particulate emission characteristics as compared with petroleum-based fuels, so it can respond to exhaust gas regulations positively. A natural gas engine has been introduced to improve the quality of the atmosphere, a diversity of fuel, a stable supply, and it has widely been used in city buses and garbage trucks. Recently, the natural gas engine has received attention by overcoming the disadvantage of the theoretical air-fuel ratio method through the development of EGR cooler and engine parts with the development of LP-EGR technology. In this study, we try to develop the cogeneration system that can simultaneously generate electric power and heat by remodeling the gasoline engine to the mixer type CNG engine. As a result, it was able to reduce the NOx (approximately 77%) compared to the diesel engines with same displacement.

An Experimental Study on the Temperature Control For a Gas Engine Cogeneration System (가스엔진 열병합시스템의 온도제어에 관한 실험적 연구)

  • 장상준;유재석;방효선;한정옥
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.28-33
    • /
    • 1996
  • This study was carried out find out the appropriate tuning method of PID controller for a package type gas engine cogeneration system in terms of stabilizing the engine coolant temperature and system heat balance. In order to acquire the proper parameters of the controller, a system transfer function was set as a first order plus dead time model and thereafter model parameters were determined by using several tuning methods. And, with determined values of parameters and the system transfer functions, optimal turning method was selected by simulating the process using MATLAB. From the experimental results, it was found that obtained PID gains made the system stable in various operating conditions.

  • PDF

Combustion Characteristics of a Premixed Burner in a Stirling Engine for a Domestic Cogeneration System (가정용 열병합 스털링 엔진을 위한 예혼합 버너의 연소 특성)

  • Ahn, Joon;Lee, Youn-Sik;Kim, Hyouck-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • The availability of thermal energy has been widely recognized recently, and the cascade usage of thermal energy from combustion has been encouraged. Within this framework, a 1-kW-class Stirling-engine.based cogeneration system has been proposed as a unit of a distributed energy system. The capacity has been designed to be adequate for domestic usage, which requires high compactness as well as low emissions and noise. To develop a highly efficient system satisfying these requirements, a premixed slot-type short-flame burner has been proposed, and a series of experiments has been performed to understand its combustion characteristics. Flame images have been captured to observe the dependence of the flame mode on the combustion load and air/fuel ratio. The exhaust gas has been sampled and analyzed to study the emission characteristics for each flame mode.

Development and efficiency evaluation of 30kW scale syngas cogeneration system (30kW 급 합성가스 열병합 시스템 개발 및 효율 성능평가)

  • Park, Il-Gun;Kim, Sang-Tae;Noh, Gwi-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1427-1433
    • /
    • 2019
  • In this paper, Gas engine was tested for the energy of synthesis gas. As excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 in 1800 rpm and synthesis gas, thermal efficiency generally decrease and power generation was 34 kWm at λ 1.4. And excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4 in power generation 34 kWm, thermal efficiency generally increase 34.2%, 36.9%, 37.2%, 37.4%, 38.1%. Total efficiency through power generation consumes 38.7 kg/h of fuel at 30 kWe load and recovers 57.3% of waste heat by recovering 57.3 kW of waste heat through 32.1% power generation efficiency and heat recovery from cooling water and exhaust gas. The total efficiency was 85.8%.

Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine (1kW급 스털링엔진 고온 열교환기의 Fin 형상 개선 효과 분석)

  • Ahn, Joon;Kim, Seok Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.545-552
    • /
    • 2017
  • In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.