• Title/Summary/Keyword: Gas diffusion resistance

Search Result 78, Processing Time 0.025 seconds

Comparative Study of Stomatal Density and Gas Diffusion Resistance in Leaves of Various Types of Rice (벼 품종유형간 잎 기공밀도와 기체확산저항 비교)

  • Chen, Wenfu;Su, Zenjin;Qian, Taiyong;Zhang, Longbu;Joo Yeul, Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.125-132
    • /
    • 1995
  • Studies were made on differences among types and varieties of rice in stomatal density and gas diffusion resistance, and on the relationship between these traits and photosynthetic rate. Significant differences among types and varieties were found stomatal density and gas diffusion resistance. Generally, stomatal density was higher in indica varieties than in Japonica varieties, gas diffusion resistance was lower in the former than in the later, in varieties developed through indica-japonica hybridization it was intermadiate. The stomatal density was closely positively correlated with the gas conductivity and the net photosynthetic rate, was not correlated with single leaf area, and had significant negative correlation with specific leaf weight. Higher photosynthetic rate of indica varieties mainly results from its high stomatal density and low gas diffusion resistance. The result also suggested that high photosynthetic rate might be obtained if the high stomatal density and low gas diffusion resistance in indica could be combined with the larger specific leaf weight in japonica through crossing between two.

  • PDF

Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석)

  • DONG HEE KIM;HYOEN SEUNG JUNG;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.283-291
    • /
    • 2023
  • The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

Diffusion Model of Aluminium for the Formation of a Deep Junction in Silicon (실리콘에서 깊은 접합의 형성을 위한 알루미늄의 확산 모델)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, the physical mechanism and diffusion effects in aluminium implanted silicon was investigated. For fabricating power semiconductor devices, an aluminum implantation can be used as an emitter and a long drift region in a power diode, transistor, and thyristor. Thermal treatment with O2 gas exhibited to a remarkably deeper profile than inert gas with N2 in the depth of junction structure. The redistribution of aluminum implanted through via thermal annealing exhibited oxidation-enhanced diffusion in comparison with inert gas atmosphere. To investigate doping distribution for implantation and diffusion experiments, spreading resistance and secondary ion mass spectrometer tools were used for the measurements. For the deep-junction structure of these experiments, aluminum implantation and diffusion exhibited a junction depth around 20 ㎛ for the fabrication of power silicon devices.

A Study on the Effect of the $CO_2$ Gas on the Growth Mechanism of the Nitrocarburized Layer (연질화층의 성장기구에 미치는 $CO_2$가스의 영향에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.25
    • /
    • pp.175-184
    • /
    • 1995
  • Mechanical properties of the gas nitrocarburized product depend on the surface compound layer and the diffusion zone formed. The compound layer improves the wear resistance, and the corrosion resistance. Though phase composition, pore layer and growth rate of the compound layer varies according to the treatment time, temperature and the kind of the steel substrate, they are strongly influenced by the environmental gas composition. In the current study, the growth behavior of the compound layer and diffusion zone of the carbon steel and the alloy steel upon nitrocarburizing treatment at $570^{\circ}C$, and the phase composition and the variation in the growth rate of the compound layer according to the variation of the gas environment which was the medium of the nitriding and carburizing reaction were investigated.

  • PDF

Effect of Induction Hardening on Mechanical Properties in Gas Nitrocarburized SM35C Steel (가스 침질탄화처리한 SM3SG강의 기계적 성질에 미치는 고주파퀜칭의 영향)

  • Kim, H.S.;Lee, K.B.;Yu, C.H.;Kim, H.T.;Jang, H.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.224-230
    • /
    • 2000
  • Garbon steel(SM35C) was gas nitrocarburized at $580^{\circ}C$ in $55%N_2-40%NH_3-5%CO_2$ mixed gas atmosphere, and then the steel was induction hardened at $850^{\circ}C$. The microstructure of gas nitrocarburized surface layer was observed by optical microscope and SEM. The phase analysis was carried out by X-ray diffraction method. The mechanical properties of gas nitrocarburized SM35C steel was evaluated by hardness, wear and fatigue test. The thickness of compound and diffusion layer were increased with increasing the gas nitrocarburizing time and the densest compound layer was obtained at 3 hours gas nitrocarburizing time. In case of 15sec induction hardening after gas nitrocarburizing, the surface hardness was decreased from 800Hv to 630Hv owing to the decomposition of compound layer, but wear resistance was increased because of increased hardness of diffusion layer. The fatigue strength of induction hardened steel after gas nitrocarburizing, $58kgf/mm^2$, was higher than $41.5kg/mm^2$ of gas nitrocarburized steel and $45kg/mm^2$ of induction hardened steel, respectively.

  • PDF

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Effect of Gas Diffusion Layer Property on PEMFC Performance (기체확산층 물성이 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.568-574
    • /
    • 2020
  • Gas diffusion layer (GDL) is one of the main components of PEMFC as a pathway of reactants from a flow field to an electrode, water transport in reverse direction, heat management and structural support of MEA. In this study, the effect of GDL on fuel cell performance was investigated for commercial products such as 39BC and JNT30-A3. Polarization curve measurements were performed at different flow rates and relative humidity conditions using 25 ㎠ unit cell. The parameters on operating conditions were calculated using an empirical equation. The electrical resistance increased as the GDL PTFE content increased. The crack of microporous layer had influence on the concentration loss as water pathway. In addition, the ohmic resistance increased as the relative humidity decreased, but decreased as the current density increased due to water formation. Curve fitting analysis using the empirical equation model was applied to identify the tendency of performance parameters on operating conditions for the gas diffusion layer.

Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate (고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정)

  • Oh, In-Hwan;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.