• 제목/요약/키워드: Gas diffusion layer

검색결과 264건 처리시간 0.035초

불응축성 기체 환경에서의 연무/확산 경계층 응축열전달 모델 평가 (Evaluation of the Mist Diffusion Layer Condensation Heat Transfer Model with a Non-condensable Gas Present)

  • 변층섭;이재용;이창섭
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.371-376
    • /
    • 2003
  • 원자력 발전소에서 격납건물 계통의 건전성 유지는 냉각재상실사고(Loss of Coolant Accident: LOCA) 및 주증기관 파단(Main Steam Line Break : MSLB) 사고와 같은 설계기준사고 시 격납건물의 최대 온도/압력을 평가하는 격납건물 성능 평가는 격납용기 내에 방사능 물질을 효율적으로 가두어 방사능 피해로부터 공공의 안전을 확보할 수 있느냐 하는 관건이다.(중략)

  • PDF

1g와 0g에서의 에틸렌 확산화염 내 매연 생성 특성에 관한 수치적 연구 (A numerical study on soot formation in ethylene diffusion flames under 1g and 0g)

  • 최재혁;박상균
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.807-815
    • /
    • 2013
  • 대기압에서의 층류 에틸렌 확산 화염 내 매연 생성에 대하여 부력의 영향에 대한 보다 나은 이해를 위해 0g와 1g 조건하에서 수치해석을 수행하였다. 수치해석을 위하여 가스상 메커니즘과 열 및 이송특성을 이용하였다. 매연의 생성과 성장 및 산화에 대하여 예측하기 위하여 간단한 매연 모델이 채택되었으며 이 모델은 가스상과 매연의 화학적 상호작용에 고려되었다. 수치 결과로서 보다 두꺼운 확산층과 축방향 속도의 감소로 인해 0g에서의 화염이 1g하의 화염보다 더 넓은 화염을 가진다는 알 수 있었다. 0g에서의 축방향 속도의 감소는 더 긴 체류 시간을 가지게 하고 그 결과로 더 많은 매연 체적분율을 나타나게 한다. 0g 하에서는 화염이 부력으로 인한 불안정성이 없어져 화염의 흔들거림이 사라졌다.

열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정 (Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel)

  • 오도원;박기원;이준범;이상윤
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF

동결/해동 조건에서 기체확산층의 물성이 고분자전해질연료전지의 내구성에 미치는 영향 (Effect of the gas diffusion layer on freeze/thaw durability in polymer electrolyte fuel cells)

  • 박구곤;임수진;박진수;손영준;임성대;김창수;양태현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.640-643
    • /
    • 2009
  • The effect of the kind of gas diffusion layers (GDLs) on the freeze/thaw condition durability in polymer electrolyte fuel cells (PEFCs) were investigated. For this purpose, three kinds of GDLs, i.e., felt, paper and cloth types with different basic properties have been first prepared, then the changes in the properties and performance of cells was observed during the freeze/thaw cycles ranging from -30 to 70 $^{\circ}C$. The single cells consisting of different GDLs were evaluated for performance. The performance degradation and the cell resistance increase could be directly correlated. The physical destruction of electrode was shown by SEM analysis. It was presented that mechanical supporting force of interface between materials can help enhancing the durability of PEFCs in the freeze/thaw condition.

  • PDF

기체확산층의 기공률이 고분자 전해질 연료전지 성능에 미치는 영향에 관한 전산해석 연구 (Numerical Study on the Effects of GDL Porosity on the PEMFC Performance)

  • 김경연;손영준;김민진;이원용
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1022-1030
    • /
    • 2009
  • Numerical analysis was carried out to investigate the effect of GDL (Gas diffusion layer) porosity on the performance of PEMFC (proton exchange membrane fuel cell). A complete three-dimensional model was chosen for single straight channel geometry including cooling channel. Main emphasis is placed on the heat and mass transfer through the GDL with different porosity. The present numerical results show that at high current densities, the cell voltage is influenced by the GDL porosity while the cell performance is nearly the same at low current densities. At high current densities, low value of GDL porosity results in decrease of the fuel cell performance since the diffusion of reactant gas through GDL becomes slow with decreasing porosity. On the other hand, for high GDL porosity, the effective thermal conductivity becomes low and the heat generated in the cell is not removed rapidly. This causes the temperature of fuel cell to increase and gives rise to dehydration of the membrane, and ultimately increase of the ohmic loss.

유로형상 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구 (Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns)

  • 이필형;조선아;최성훈;황상순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.407-410
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and all and water generated from electrochemical reaction in diffusion layer In this study, fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode electrode together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in nterdigitated flow channel. The effect of temperature and stoichiometric number on performance can be calculated and analyzed as well.

  • PDF

유로형상 변화에 따른 고분자 전해질 연료전지(PEMFC)의 성능 및 전달특성에 대한 3차원 수치 해석적 연구 (Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns)

  • 이필형;조선아;최성훈;황상순
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.78-85
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and air and removal of water generated from electrochemical reaction in diffusion layer. In this study. fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode channel together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in interdigitated flow channel. And effects of temperature and stoichiometric number on performance can be calculated and analyzed as well. Nomenclature.

  • PDF

An analysis of the Wi-Ni Carbide Alloy Diffusion Bonding technique in its application for DME Engine Fuel Pump

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.246-251
    • /
    • 2020
  • Dimethyl Ether(DME) engine use a highly efficient alternative fuel having a great quantity of oxygen and has a advantage no polluting PM gas. The existing DME fuel cam material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding piston shoe and contact area which demands high characteristics is needed. The development of WC-Ni base carbide alloy optimal bonding composition technique was accomplished in this study. To check out the influence of bonding temperature and time, bonding characteristics of sintering temperature was experimented. The hardness of specimen and bonding rate were measured using ultrasound equipment. The bonding state of each condition was excellent, and the thickness of mid-layer, temperature and maintaining time were measured. The mid-layer thickness according to bonding temperature and maintaining time were observed with optical microscope. We analyzed the micro-structural analysis, formation of bonding specimen, wafer fabrication and fuel cam abrasion test. Throughout this study, we confirmed that the fuel cam for DME engine which demands high durability against velocity and pressure is excellent.

비선형 특성을 갖는 (Sr·Ca)TiO3계 세라믹의 미세구조 및 유전 특성 (Microstructure and Dielectric Properties of (Sr·Ca)TiO3-based Ceramics Exhibiting Nonlinear Characteristics)

  • 최운식;강재훈;박철하;김진사;조춘남;송민종
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2002
  • In this paper, the microstructure and the dielectric properties of Sr$\_$1-x/CaxTiO$_3$(0$\leq$x$\leq$0.2)-based grain boundary layer ceramics were investigated. The sintering temperature and time were 1420∼152 0$\^{C}$ and 4 hours in N$_2$ gas, respectively. The average grain size and the lattice constant were decreased with increasing content of Ca, but the average grain size was increased with increase of sintering temperature. The second phase foamed by the thermal diffusion of CuO from the surface leads to verb high apparent dielectric constant, $\xi$$\_$r/>50000 and low dielectric loss, tan$\delta$<0.05. X-ray diffraction patterns of Sr$\_$1-x/CaxTiO$_3$ exhibited cubic structure, and the peaks shifted upward and the peak intensity were decreased with x. This is due to the lattice contraction as Sr is replaced by Ca with a smaller ionic radius. The specimens treated thermal diffusion for 2hrs in 1150$\^{C}$ exhibited nonlinear current-voltage characteristic, and its nonlinear coefficient(a) was overt 7.