DOI QR코드

DOI QR Code

A numerical study on soot formation in ethylene diffusion flames under 1g and 0g

1g와 0g에서의 에틸렌 확산화염 내 매연 생성 특성에 관한 수치적 연구

  • Choi, Jae-Hyuk (Division of Marine System engineering, Korea Maritime and Ocean University) ;
  • Park, Sang-Kyun (Department of Power System Engineering, Kunsan National University)
  • Received : 2013.06.26
  • Accepted : 2013.09.10
  • Published : 2013.11.30

Abstract

A numerical study on soot formation in a laminar ethylene diffusion flame at atmospheric pressure was conducted to obtain a better understanding of the effects of buoyancy on sooting flames under 0g and 1g using a gas-phase reaction mechanism and thermal and transport properties. A simple model was employed to predict soot formation, growth and oxidation with interactions between the gas phase chemistry and the soot chemistry taken into account. Results showed that the flames in 0g are much wider than that of 1g because of the thicker diffusion layer and reduction in axial velocity. The reduction in the axial velocity in 0g results in longer residence times, and resulting in greatly enhanced soot volume fraction. And, under zero-gravity, due to the lack of a buoyancy-induced instability, flame instability disappears.

대기압에서의 층류 에틸렌 확산 화염 내 매연 생성에 대하여 부력의 영향에 대한 보다 나은 이해를 위해 0g와 1g 조건하에서 수치해석을 수행하였다. 수치해석을 위하여 가스상 메커니즘과 열 및 이송특성을 이용하였다. 매연의 생성과 성장 및 산화에 대하여 예측하기 위하여 간단한 매연 모델이 채택되었으며 이 모델은 가스상과 매연의 화학적 상호작용에 고려되었다. 수치 결과로서 보다 두꺼운 확산층과 축방향 속도의 감소로 인해 0g에서의 화염이 1g하의 화염보다 더 넓은 화염을 가진다는 알 수 있었다. 0g에서의 축방향 속도의 감소는 더 긴 체류 시간을 가지게 하고 그 결과로 더 많은 매연 체적분율을 나타나게 한다. 0g 하에서는 화염이 부력으로 인한 불안정성이 없어져 화염의 흔들거림이 사라졌다.

Keywords

References

  1. D. A. Lack and J. J. Corbett, "Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing," Atmospheric Chemistry and Physics Discussions, vol. 12, pp. 3509-3554, 2012. https://doi.org/10.5194/acpd-12-3509-2012
  2. IPCC, An Assessment of the Intergovernmental Panel on Climate Change, Climate Change 2007:Synthesis report, Valencia, Spain, 12-17 Nov, 2007.
  3. V. Ramanathan and G. Carmichael, "Global and regional climate changes due to black carbon," Nature Geoscience, vol. 1, pp.221- 227, 2008. https://doi.org/10.1038/ngeo156
  4. IMO(Internatioal Maritime Organization), "Prevention of Air Pollution from Ships," Marine Environment Protection Committee 62nd session, MEPC 62/4/3, pp. 1-4, April 2011.
  5. P. S. Greenberg and J. C. Ku, "Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusiom flames," Combustion and flame, vol. 108, pp. 227-230, 1997. https://doi.org/10.1016/S0010-2180(96)00205-2
  6. J. C. Ku, D. W. Griffin, P. S. Greenberg, and J. Roma, "Buoyancy-induced differences in soot morphology," Combustion and flame, vol. 102, pp. 1-20, 1995. https://doi.org/10.1016/0010-2180(95)00027-4
  7. A. Atreya and S. Agrawal, "Effect of radiative heat loss on diffusion flames in quiescent microgravity atmosphere," Combustion and Flame, vol. 115, no. 3, pp. 372-382, 1998. https://doi.org/10.1016/S0010-2180(97)00364-7
  8. O. Fujita and K. Ito, "Observation of soot agglomeration process with aid of thermophoretic force in a microgravity in a microgravity jet diffusion flame," Journal of Experimental Thermal and Fluid Science, vol. 26, no. 2-4, pp. 305-311, 2002. https://doi.org/10.1016/S0894-1777(02)00141-3
  9. J. C. Hermanson, H. Johari, D. P. Stocker, and U. G. Hedge, "Buoyancy effects in strongly pulsed turbulent diffusion flames," Combustion and Flame, vol. 139, no. 1-2, pp. 61-76, 2004. https://doi.org/10.1016/j.combustflame.2004.08.005
  10. B.-H. Jeon and J. H. Choi, "Effect of buoyancy on soot formation in gas-jet diffusion flame," Journal of Mechanical Science \and Technology. vol. 24, no. 7, pp. 1537-1543, 2010. https://doi.org/10.1007/s12206-010-0406-4
  11. F. A. William, Combustion Theory, Second edition, California, USA, the Benjamin/Cumming Publishing company. 1985.
  12. J. H. Choi and F. Osamu., "Numerical simulation in characteristics of laminar diffusion flame placed near wall in microgravity," Journal of Korean Society of Marine Engineering. vol. 30, no.1, pp. 140-149, 2006 (in Korean).
  13. J. B. Moss, C. d. Stewart, and K. J. Young, "Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched condition," Combustion and Flame, vol. 101, no. 4, pp. 491-500, 1995. https://doi.org/10.1016/0010-2180(94)00233-I
  14. J. H. Choi, J. Kim, S. K. Choi, B. H. Jeon, O. Fujita, and S. H. Chung, "Numerical simulation on soot deposition process in laminar ethylene diffusion flames under a microgravity condition," Journal of Mechanical Science and Technology, vol. 23, pp. 707-716, 2009. https://doi.org/10.1007/s12206-009-0203-0
  15. C. R. Kaplan, S. W. Baek, E. S. Oran, and J. L. Ellsey, "Dynamic of a strongly radiation unsteady ethylene jet diffusion flame," Combustion and Flame, vol. 96, no. 1-2, pp. 1-21, 1994. https://doi.org/10.1016/0010-2180(94)90154-6
  16. Waldmann., "On the motion of spherical particles in nonhomogeneous gases," New York, Academic Press Inc., pp. 323-344, 1961.
  17. J. H. Choi, J. H. Kim, W. J. Shin, J. S. choi, K. B. Ryu, S. M. Lee, S. H. Park, J. H. Lee, and T. W. Lim, "A study on synthesis of carbon nanomaterial as a material for eco-ship," The Korean Society of Marine Environment & Safety, vol. 18, no. 5, pp. 468-474, 2012 (in Korean). https://doi.org/10.7837/kosomes.2012.18.5.468

Cited by

  1. Effects of various densities and velocities on gaseous hydrocarbon fuel on near nozzle flow field under different laminar coflow diffusion flames vol.40, pp.2, 2016, https://doi.org/10.5916/jkosme.2016.40.2.102