• Title/Summary/Keyword: Gas diffusion

Search Result 1,042, Processing Time 0.032 seconds

The Diffusion Behavier Analysis Caused by High Pressure Natural Gas Leak in Enclosure with and without Ventilation System (I) (밀폐공간 및 강제환기공간에의 천연가스 고압분출 시 농도 확산분포 거동해석 (I))

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Eun-Ja
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2012
  • The basic understanding of gas diffusion and technology to predict the diffusion phenomena are needed to prepare against a disaster of leakage of natural gas and to design better consistent and reliable gas supply system in enclosure. The experimental results of British Gas Technology Co. are used in present study as a reference of theoretical study using CFD. The present results of 2D CFD analysis for mass flow rate of nozzle release show good agreement with experimental results within 2.6 % error. 3D CFD analysis for the characteristics of natural gas diffusion in enclosure with various ventilation patterns also gives reasonable agreement with experimental results.

A Study on the Diffusion Behavior of Leak Gas from Underground Gas Pipeline (지하매설 가스배관의 가스 누출시 지하 확산거동에 관한 연구)

  • Choi S.C.;Jo Y.D.;Kim K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.43-52
    • /
    • 1999
  • An experimental chamber was fabricated to observe the gas diffusion behavior of leak gas from underground city-gas pipeline. It was made of acryl so that feeding of gas and the measuring points of the gas could be varied in each experiment. The MOS sensors were used to measure the concentrations of leak gas. The soil media such as the Jumunjin standard sand and the granite weathered soil were used to measure the gas diffusion and the change of leak gas concentrations was measured with time for various gas flow rate. As the distance between the leak point of gas and the measuring point of MOS sensor decreases, or the leak rate increases, the detection time of gas at a measuring points decreases and the gas concentration increases quickly and the concentration of the gas at steady state also increases. As the density of granite weathered soil is higher than that of Jumunjin standard sand for compaction, the detection time of leak gas in the granite weathered soil was longer than that in the Jumunjin standard soil. The leak gas concentrations in the granite weathered soil were lower than those in the Jumunjin standard sand at the beginning of gas leaking from a pipe, but inverse phenomenon was occured at steady state.

  • PDF

The Effect of Liquid Water in Fuel Cell Cathode Gas Diffusion Layer on Fuel Cell Performance (가스 확산층(GDL)내부의 물이 연료전지 성능에 미치는 영향)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • In this paper, a dynamic model describing the 2 phase effect on the gas diffusion layer depending on load change of a fuel cell stack was developed to examine the effects of liquid water in fuel cell cathode gas diffusion layer on the fuel cell performance. For the developed model, 2 phase effect on the performance of a fuel cell stack depending on the load changes, concentration distribution of water vapor and oxygen inside a gas diffusion layer, the effect of the thickness and porosity of the gas diffusion layer on the fuel cell stack voltage were examined. As a result, a fuel cell stack voltage for the 2 phase model within the scope of the research become lower than that for the 1 phase model regardless of the load. Although oxygen molar concentration for the gas diffusion layer adjacent to the catalyst layer was the lowest, water vapor concentration is the highest. In addition, as thickness and porosity of the gas diffusion layer increased and decreased, respectively, the fuel cell stack voltage decreased.

CONCENTRATION CONTOURS IN LATTICE AND GRAIN BOUNDARY DIFFUSION IN A POLYCRYSTALLINE SOLID

  • Kim, Yongsoo;Wonmok Jae;Saied, Usama-El;Donald R. Olander
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.707-712
    • /
    • 1995
  • Grain boundary diffusion plays significant role in the fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated inside fuel pellet have to diffuse in the lattice and in the grain boundary before they reach open space in the fuel rod. In the mean time, the grains in the fuel pellet grow and shrink according to grain growth kinetics, especially at elevated temperature at which nuclear reactors are operating. Thus the boundary movement ascribed to the grain growth greatly influences the fission gas release rate by lengthening or shortening the lattice diffusion distance, which is the rate limiting step. Sweeping fission gases by the moving boundary contributes to the increment of the fission gas release as well. Lattice and grain boundary diffusion processes in the fission gas release can be studied by 'tracer diffusion' technique, by which grain boundary diffusion can be estimated and used directly for low burn-up fission gas release analysis. However, even for tracer diffusion analysis, taking both the intragranular grain growth and the diffusion processes simultaneously into consideration is not easy. Only a few models accounting for the both processes are available and mostly handle them numerically. Numerical solutions are limited in the practical use. Here in this paper, an approximate analytical solution of the lattice and stationary grain boundary diffusion in a polycrystalline solid is developed for the tracer diffusion techniques. This short closed-form solution is compared to available exact and numerical solutions and turns out to be acceptably accurate. It can be applied to the theoretical modeling and the experimental analysis, especially PIE (post irradiation examination), of low burn up fission. gas release.

  • PDF

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

Effect of Anode Gas Channel Height on Gas Diffusion and Cell Performance in a Molten Carbonate Fuel Cell (용융탄산염 연료전지 연료극 기체 유로 높이에 따른 가스 확산 및 단전지 성능 변화 연구)

  • Lee, Jung-Hyun;Kim, Do-Hyung;Kim, Beum-Ju;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.479-484
    • /
    • 2009
  • The effect of anode gas channel height on gas diffusion and cell performance in a 100 $cm^2$ class molten carbonate single cell is investigated. Single cell separators with three different channel height are used. The effect of the gas channel height on the distribution of the reactive gas concentration is evaluated by the two-dimensional concentration diffusion equation. The overpotential caused by concentration drop with different channel height is estimated by the voltage decay related to diffusion of reactants, well known as concentration polarization, using limiting current density. The estimation could have the possibility to identify the reactant mass transfer polarization in the complicate factors of the overall electrodes.

An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion - (광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 -)

  • Cho, Jaegeol;Lee, Jeonghoon;Kim, Hyun Woo;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

Comparative Study of Stomatal Density and Gas Diffusion Resistance in Leaves of Various Types of Rice (벼 품종유형간 잎 기공밀도와 기체확산저항 비교)

  • Chen, Wenfu;Su, Zenjin;Qian, Taiyong;Zhang, Longbu;Joo Yeul, Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.125-132
    • /
    • 1995
  • Studies were made on differences among types and varieties of rice in stomatal density and gas diffusion resistance, and on the relationship between these traits and photosynthetic rate. Significant differences among types and varieties were found stomatal density and gas diffusion resistance. Generally, stomatal density was higher in indica varieties than in Japonica varieties, gas diffusion resistance was lower in the former than in the later, in varieties developed through indica-japonica hybridization it was intermadiate. The stomatal density was closely positively correlated with the gas conductivity and the net photosynthetic rate, was not correlated with single leaf area, and had significant negative correlation with specific leaf weight. Higher photosynthetic rate of indica varieties mainly results from its high stomatal density and low gas diffusion resistance. The result also suggested that high photosynthetic rate might be obtained if the high stomatal density and low gas diffusion resistance in indica could be combined with the larger specific leaf weight in japonica through crossing between two.

  • PDF

Radiation Heat Flux and Combustion Characteristics of Inverse Diffusion Flame Burner Using Synthesis Gas, Part 1 : Air-Fuel Combustion (합성가스를 이용한 역확산버너의 연소 및 복사열전달 특성, Part 1 : 공기-연료 연소)

  • Lee, Pil-Hyong;Park, Chang-Soo;Lee, Jae-Young;Park, Bong-Il;Hwang, Sang-Soon;Lee, Sung-Ho;Anh, Yong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Waste Thermal Pyrolysis Melting process was proposed and has been studied in order to prevent air pollution by dioxin and fly ash generated from combustion process for disposal of waste. In this study, applicability as the fuel of diffusion burner of synthesis gas formed from Waste Thermal Pyrolysis process was addressed. Results showed that there is no big difference in the flame shape between MNDF and SNDF, and lift off was detected in MIDF but flame is more stable in SIDF which contains hydrogen with high combustion velocity as flow rate in first nozzle is increased. And radiation heat flux in inverse diffusion flame of synthesis gas was found to be more by 1.5 times than that in inverse diffusion flame of methane because of higher mole fraction of $CO_2$ with high emissivity in product gas.

  • PDF

Two-dimension Numerical Simulation of Stack Flue Gas Dispersion

  • Park, Young-Koo;Wu, Shi-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • A numerical simulation of plume from a stack into atmospheric cross flow is investigated using a two-dimension model. The simulation is based on the ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite volume method. In this paper, it mostly researches how the wind velocity affects the flue gas diffusion from an 80 m high stack. Wind velocity is one of the most important factors for flue gas diffusion. The plume shape size, the injection height, the NO pollutant distribution and the concentration at the near ground are presented with two kinds of wind velocities, 1 m/s and 5 m/s. It is found that large wind velocity is better for flue gas diffusion, it generates less downwash. Although the rise height is lower, the pollutant dilutes faster and more sufficient.