• Title/Summary/Keyword: Gas chromatography-mass spectrometry (GC/MS)

Search Result 662, Processing Time 0.029 seconds

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

Antioxidant Activities of Essential Oils from Citrus × natsudaidai (Yu. Tanaka) Hayata Peels at Different Ripening Stage

  • YANG, Jiyoon;CHOI, Won-Sil;LEE, Su-Yeon;KIM, Minju;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.272-282
    • /
    • 2022
  • The essential oil extracted from Citrus × natsudaidai (Yu. Tanaka) Hayata peels is known to have various biological properties. However, the chemical composition of essential oil is influenced by the ripening stages of fruits, which then affects related biological activities. This study investigates the antioxidant activities of essential oils extracted from Citrus × natsudaidai peels at different ripening stages (immature, mature, and overripe). The essential oils were extracted using the hydro-distillation method. As a result of gas chromatography-mass spectrometry (GC-MS) analysis, d-limonene was dominant and was increased as matured. However, 𝛄-terpinene was decreased. The antioxidant properties and their total phenolic content (TPC) were influenced by the ripening stages. The TPC was highest in the immature stage of essential oil (1,011.25 ± 57.15 mg GAE/100 g). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was excellent in the immature stage (EC50 = 15.91 ± 0.38 mg/mL). 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity was superior in overripe stage (EC50 = 20.43 ± 0.37 mg/mL). The antioxidant activity measured using ferric reducing antioxidant power (FRAP) assay showed higher values for the essential oils in immaturity (1,342.37 ± 71.07 mg Fe2+/100 g). Comprehensively, the essential oil in the immature stage showed the best antioxidant activity. Finally, knowing the chemical composition and antioxidant activity at different ripening stages will provide data for selecting the right fruit.

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees

  • Dekebo, Aman;Kim, Min-Jung;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.62-75
    • /
    • 2022
  • Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Comparative Profiling of Volatiles in Flower Tea of Dendranthema zawadskii var. latilobum, Chrysanthemum morifolium, Tagetes erecta, and Matricaria chamomilla (구절초, 국화, 마리골드 및 캐모마일 꽃차의 향기 성분 비교)

  • Kanphassorn Wimonmuang;Young-Sang Lee;Seung-Young Oh;Suk-Keun Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.109-109
    • /
    • 2020
  • 꽃차(Flower tea)는 최근 다양한 제품이 개발되고 소비가 확대되는 등 그 산업적 가치가 증대하고 있다. 꽃차의 향기 특성은 우렸을 때 나타나는 색깔 및 인체에서의 생리활성과 더불어 주요한 꽃차 품질결정 요소이다. 본 연구는 꽃차로의 이용이 활발한 국화과 식물 중 구절초(Dendranthema zawadskii var. latilobum), 국화(Chrysanthemum morifolium), 노랑색 및 주황색 마리골드(Tagetes erecta 'Yellow' and 'Orange'), 그리고 캐모마일(Matricaria chamomilla)의 향기 성분특성을 구명하기 위하여 제조된 꽃차를 headspace-solidphase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS)를 이용하여 분리, 동정하였다. 국화과 꽃차로부터 총 117종의 휘발성 성분이 확인되었는데, 각 꽃차 종류별 동정된 휘발성 성분의 개수, 주요 3개 휘발성 성분과 전체 향기성분 peak중 이들이 차지하는 구성비율(%)은 다음과 같았다: 구절초 64종, camphor (31%), α-pinene(14%), camphene(14%); 국화 60종, camphor(15%), chrysantheny acetate(13%), eucalyptol (11%); 마리골드 '옐로우' 53종, 2,4-heptadienal(26%), trans-isocarveol(21%), cis-β-Copaene(18%); 마리골드 '오렌지' 61종, β-caryophyllene(16%), β-ocimene epoxide(12%), β-ocimene(12%); 캐모마일 50종, β-farnesene(63%), nonane(9%), spathulenol(5%). 국화과 꽃차 5종 모두에서 공통적으로 검출된 성분은 β-caryophyllene, α-pinene, β-farnesene 등 10종이었으며 마리골리 '옐로'는 '오렌지'와 주요 향기성분의 조성에서 뚜렷한 차이를 나타내었다. 비록 그 함량은 낮았으나 구절초, 국화, 마리골드 '오렌지', 그리고 캐모마일은 각각 10종, 12종, 3종 및 13종이었다. 마리골드 '엘로'의 경우 검출된 모든 향기성분은 마리골드 '오렌지'나 다른 국화과 식물의 꽃차에서도 검출된 바, 향기 성분이 다양성이 다소 낮게 나타났다.

  • PDF

Foeniculum vulgare essential oil nanoemulsion inhibits Fusarium oxysporum causing Panax notoginseng root-rot disease

  • Hongyan Nie;Hongxin Liao;Jinrui Wen;Cuiqiong Ling;Liyan Zhang;Furong Xu;Xian Dong
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.236-244
    • /
    • 2024
  • Background: Fusarium oxysporum (F. oxysporum) is the primary pathogenic fungus that causes Panax notoginseng (P. notoginseng) root rot disease. To control the disease, safe and efficient antifungal pesticides must currently be developed. Methods: In this study, we prepared and characterized a nanoemulsion of Foeniculum vulgare essential oil (Ne-FvEO) using ultrasonic technology and evaluated its stability. Traditional Foeniculum vulgare essential oil (T-FvEO) was prepared simultaneously with 1/1000 Tween-80 and 20/1000 dimethyl sulfoxide (DMSO). The effects and inhibitory mechanism of Ne-FvEO and T-FvEO in F. oxysporum were investigated through combined transcriptome and metabolome analyses. Results: Results showed that the minimum inhibitory concentration (MIC) of Ne-FvEO decreased from 3.65 mg/mL to 0.35 mg/mL, and its bioavailability increased by 10-fold. The results of gas chromatography/mass spectrometry (GC/MS) showed that T-FvEO did not contain a high content of estragole compared to Foeniculum vulgare essential oil (FvEO) and Ne-FvEO. Combined metabolome and transcriptome analysis showed that both emulsions inhibited the growth and development of F. oxysporum through the synthesis of the cell wall and cell membrane, energy metabolism, and genetic information of F. oxysporum mycelium. Ne-FvEO also inhibited the expression of 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase and reduced the content of 2-oxoglutarate, which inhibited the germination of spores. Conclusion: Our findings suggest that Ne-FvEO effectively inhibited the growth of F. oxysporum in P. notoginseng in vivo. The findings contribute to our comprehension of the antifungal mechanism of essential oils (EOs) and lay the groundwork for the creation of plant-derived antifungal medicines.

Chemical composition, antioxidant and antifungal activities of rhizome essential oil of Kaempferia parviflora Wall. ex Baker grown in Vietnam

  • Dang-Minh-Chanh Nguyen;Thi-Hoan Luong;Tien-Chung Nghiem;Woo-Jin Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.15-22
    • /
    • 2023
  • The aim of the present study was to evaluate the chemical composition and antioxidative activity of rhizome essential oil of Kaempferia parviflora Wall. ex Baker. The essential oil extracted by hydrodistillation was chemically profiled by GC/MS analysis. The antioxidative activity was determined and evaluated spectroscopically by the 2,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays. According to the results, the major essential oil components were camphene (18.03%), β-pinene (14.25%), a-pinene (12.38%), endo-borneol (10.23%), β-copaene (8.38%), and linalool (8.20%). K. parviflora rhizome oil possessed antioxidant potential, exhibiting DPPH and ABTS radical scavenging activities as high as 80.90 and 94.04%, respectively, at a concentration of 10 mg/mL. The corresponding IC50 values were 0.451±0.051 and 0.527±0.022 mg/mL, respectively (IC50 values for ascorbic acid, as the standard, were 0.209±0.016 and 0.245±0.022 mg/mL, respectively). The mycelium of F. oxysporum was distorted and collapsed when treated with 0.5 mg/mL of the EO of K. parviflora rhizome for 3 days treatment, which may provide an important information for exploring the metabolism of the fungicide K. parviflora rhizome and its derived compounds against F. oxysporum. This study provides the chemical properties of the essential oil of K. parviflora rhizome grown in Vietnam and their potential antioxidant and antifungal activities.

Volatile Compounds of Elsholtzia splendens (꽃향유의 휘발성 향기성분)

  • Lee, So-Young;Chung, Mi-Sook;Kim, Mi-Kyung;Baek, Hyung-Hee;Lee, Mi-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.339-344
    • /
    • 2005
  • Volatile compounds, isolated from Elsholtzia splendens using simultaneous steam distillation extraction (SDE) and headspace solid phase microextraction (HS-SPME), were analyzed by gas chromatography/mass spectrometry(GC-MS). Twenty-nine compounds, comprising 3 aldehydes, 7 alcohols, 11 hydrocarbons, 5 ketones, and 3 miscellaneous ones, were tentatively identified from volatile compounds of Elsholtzia splendens flowers. From leaves, 30 compounds, comprising 3 aldehydes, 6 alcohols, 11 hydrocarbons, 6 ketones, and 11 miscellaneous ones, were tentatively identified. Volatile compounds extracted by HS-SPME in E. splendens flowers were 3 alcohols, 18 hydrocarbons, 3 ketones, and 2 miscellaneous ones. In leaves, 31 compounds, comprising 7 alcohols, 15 hydrocarbons, 7 ketones, and 2 miscellaneous ones, were tentatively identified. Major volatile compounds identified by SDE and HS-SPME were naginataketone and elsholtziaketone, which were identified as aroma-active compounds, representing characteristic aroma of E. splendens.

Studies on the Effect of Low Winter Temperatures and Harvest Times on the Volatile Aroma Compounds in Green Teas (동절기 저온현상과 채엽시기에 따른 녹차의 향기성분에 대한 연구)

  • Ryu, Kyung-Heon;Lee, Hye-Jin;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.383-389
    • /
    • 2012
  • Green tea leaves grown in Jeju island were harvested at different times in 2010 and 2011. Green teas harvested in 2010 experienced higher effective accumulative temperature than green teas harvested in 2011. The free and bound volatile compounds in green tea were analyzed using headspace-solid phase microextraction gas chromatography (GC) and GC-mass spectrometry. All green teas contained the 6 major volatile compounds ${\alpha}$-methylbutanal, pentanal, (E)-2-hexen-1-ol, ${\beta}$-linalool, geraniol and ${\alpha}$-farnesene. After enzyme treatment, (Z)-3-hexen-1-ol, benzaldehyde, (Z)-3-hexenyl acetate, ${\beta}$-linalool and geraniol were increased in all green teas. (Z)-3-hexen-1-ol increased significantly in green tea harvested in 2010, and benzaldehyde increased widely in green tea harvested in 2011. However, the total volatile compounds in green teas harvested in 2011 were remarkably decreased in comparison to harvested in 2010. It was confirmed that free and bound volatile compounds in green tea are affected by low winter temperatures.

Comparison of Volatile Compounds from Thymus Magnus Nakai by Three Different Extraction Methods (추출방법에 따른 섬백리향의 휘발성 향기성분 비교)

  • Lee, Sa Eun;Kim, Songmun;Lim, Won Churl;Kang, Ki Choon;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • The purpose of this study was to analyse the volatile components of Thymus magnus Nakai extracted by different extraction methods and reproduce scent close to original plant based on the results. For this purpose, the essential oil of T. magnus was extracted by supercritical fluid extraction (SFE), water and steam distillation (WSD) and simultaneous steam distillation and extraction (SDE) methods. The compositions of the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Consequently, linalool (0.1%) and trans-sabinene hydrate (0.9%) contents in the essential oil extracted by SFE method of $40^{\circ}C$ - 400 bar condition were relatively higher than compositions of the essential oil extracted by different conditions. The contents of borneol (3.82%), terpinen-4-ol (0.3%) and caryophyllene oxide (2.2%) were relatively higher at $50^{\circ}C$ - 400 bar and the contents of ${\beta}$-bisabolene (5.88%), 1-octen-3-ol (0.31%), caryophyllene (2.91%), p-cymene (2.04%) and ${\gamma}$-terpinene (0.52%) were extracted relatively higher at $50^{\circ}C$ - 300 bar. The compositions of the essential oil extracted by SFE method of $50^{\circ}C$ - 200 bar condition contained relatively higher contents of thymol (77.63%) and carvacrol (5.65%). The contents of ${\alpha}$-bisabolol (0.17%), caryophyllene (6.46%), cis-${\alpha}$-bisabolene (1.52%) and ${\beta}$-bisabolene (20.65%) in the essential oil extracted by WSD method were relatively higher than compositions of the essential oil extracted by SFE method, and by SDE method we couldn't obtained essential oil. The results of this study could be utilized to reproduce scent close to original scent of T. magnus.