• Title/Summary/Keyword: Gas chromatography-mass spectrometry (GC/MS)

Search Result 662, Processing Time 0.034 seconds

A Study on the analysis method and composition characteristics of organic materials in the pottery excavated at the palace site in Yongjangseong Fortress, Jindo (진도 용장성 왕궁지 출토 도기호 내부 유기물의 분석법과 성분 특성 연구)

  • YUN Eunyoung;YU Jia;KIM Kyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.158-171
    • /
    • 2023
  • Pottery filled with organic materials was excavated from the G-2 building site of Yongjangseong Fortress, Jingo, a relic of the Goryeo Dynasty. In this study, the characteristics of organic material were confirmed by a scientific analysis of organic material in pottery found at the palace in Yongjangseong, Jindo. In addition, it was intended to review the analysis method to identify the natural resin and to secure characteristic components(biomarkers) for each natural resin and use them as basic data in the future. The organic materials in the pottery were analyzed using attenuated total reflectance Fourier-transformed infrared spectroscopy(ATR-FTIR) and gas chromatography mass spectrometry(GC-MS). The infrared spectral characteristics were estimated to be natural resin, and biomarkers of organic materials were identified as sesquiterpene-based compounds(C15H24, MW 204) and derivatives. The lacquer(T.vemicifluum) is composed mainly of alkenes, alkanes, and catechol. Pine resin(P.densiflora), on the other hand, is primarily composed of diterpenoid(abietic acid, pimaric acid) and Whangchil(yellow lacquer) is identified to have sesquiterpenes(such as selinene, muurolene, calamenene) as its main components. So, the organic material in the pottery can be identified as Whangchil by comparing their compounds with modern resin materials from Dendropanax. morbifera that correspond with the results. Whangchil, which is exuded from the Dendropanax. morbifera, has been used as a natural coating materials since ancient times, and it has been confirmed that the characteristic components are well preserved even 700 years later. It can be assumed that the interior Whangchil was stored not for use as a coating, but rather for ritual purposes when the building was constructed, because the pottery was found near the cornerstone. Furthermore, based on simplified sample preparation using pyrolysis-gas chromatography mass spectrometry(Py-GC-MS), the thermal decomposition products were found to be similar to the characteristic components, suggesting that this method can be applied to the identification of natural resins used in historic artifacts.

Study on the Analytical Method and Monitoring of the Oxidized Polyethylene Wax in Foods (식품 중 oxidized polyethylene wax 분석법 연구 및 함유량 실태 조사)

  • Choi, Seung-Hyun;Kim, Jae-Min;Choi, Sun-il;Jung, Tae-Dong;Cho, Bong-Yeon;Lee, Jin-Ha;Lee, Gunyoung;Lim, Ho Soo;Yun, Sang Soon;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.284-289
    • /
    • 2017
  • Oxidized polyethylene wax (OPEW) is, one of the food additives, used as a coating agent in citrus fruits and nuts. OPEW is authorized to quantum satis in EU, USA, and is acceptable less than 250 mg/kg in Australia and New Zealand. But OPEW is unauthorized as a food additive in Korea. This study was to establish the analytical method of OPEW and demonstrate the effective application of various food samples. We first conducted to compare the various analytical method including acid value (AV), high temperature gel permeation chromatography (HT-GPC), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS), gas chromatography flame ionization detector (GC-FID) and fourier transform infrared spectroscopy (FT-IR). This result indicated that FT-IR spectrum of OPEW treated food sample displayed absorption bands for carbonyl group (C=O, $1714cm^{-1}$), ester group (C-O, $1463cm^{-1}$), aliphatic group (C-H, $2916cm^{-1}$). Furthermore, IR spectrum of OPEW treated food sample showed similar tendency with IR spectrum of OPEW standard. Therefore, it is confirmed that analytical method using FT-IR can be detected on analysis of OPEW in food. As a result of monitoring of 111 samples using established analytical method, OPEW was not detected in the food samples.

The Effect of Dispersion Medium on Intensity of Volatile Flavor Components and Recovery of Essential Oil from Capsella bursa-pastoris by Steam Distillation (수증기 증류시 분산매의 조성이 냉이의 휘발성 향기성분의 강도 및 정유 회수율에 미치는 영향)

  • Choi, Hyang-Sook;Lee, Mie-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.827-833
    • /
    • 1996
  • Along with the increased necessity for an efficient utilization of Korean wild edible plants growing in fields and mountains, attempts were made to investigate the patterns of flavor changes accompanied hy various conditions of dispersion medium. The effect of various pH values and concentration of sucrose or NaCl of dispersion medium on volatile flavor patterns was investigated to evaluate the applicability of flavor components extracted from Capsella bursa-pastoris for food industry. Essential oils from this wild plant were isolated by simultaneous steam distillation-extraction (SDE) method using diethyl ether as solvent. Concentrated samples were analyzed s chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS). Most volatile flavor components of Capsella bursa-pastoris showed good recovery when steam distilled at pH 7 by SDE method. Increasing concentration of sucrose and 15% by NaCl, resulted in greater numbers of identified flavor components from Capsella bursa-pastoris.

  • PDF

Studies on the Analysis of Benzo(a)pyrene and Its Metabolites on Biological Samples by Using High Performance Liquid Chromatography/Fluorescence Detection and Gas Chromatography/Mass Spectrometry

  • Lee, Won;Shin, Hye-Seung;Hong, Jee-Eun;Pyo, Hee-Soo;Kim, Yun-Je
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.559-565
    • /
    • 2003
  • An analytical method the determination of benzo(a)pyrene (BaP) and its hydroxylated metabolites, 1-hydroxybenzo(a)pyrene (1-OHBaP), 3-hydroxybenzo(a)pyrene (3-OHBaP), benzo(a)pyrene-4,5-dihydrodiol (4,5-diolBaP) and benzo(a)pyrene-7,8-dihydrodiol (7,8-diolBaP), in rat urine and plasma has been developed by HPLC/FLD and GC/MS. The derivatization with alkyl iodide was employed to improve the resolution and the detection of two mono hydroxylated metabolites, 1-OHBaP and 3-OHBaP, in LC and GC. BaP and its four metabolites in spiked urine were successfully separated by gradient elution on reverse phase ODS $C_{18}$ column (4.6 mm I.D., 100 mm length, particle size 5 ㎛) using a binary mixture of MeOH/H₂O (85/15, v/v) as mobile phase after ethylation at 90 ℃ for 10 min. The extraction recoveries of BaP and its metabolites in spiked samples with liquid-liquid extraction, which was better than solid phase extraction, were in the range of 90.3- 101.6% in n-hexane for urine and 95.7-106.3% in acetone for plasma, respectively. The calibration curves has shown good linearity with the correlation coefficients (R²) varying from 0.992 to 1.000 for urine and from 0.996 to 1.000 for plasma, respectively. The detection limits of all analytes were obtained in the range of 0.01-0.1 ng/mL for urine and 0.1-0.4 ng/mL for plasma, respectively. The metabolites of BaP were excreted as mono hydroxy and dihydrodiol forms after intraperitoneal injection of 20 mg/kg of BaP to rats. The total amounts of BaP and four metabolites excreted in dosed rat urine were 3.79 ng over the 0-96 hr period from adminstration and the excretional recovery was less than 0.065% of the injection amounts of BaP. The proposed method was successfully applied to the determination of BaP and its hydroxylated metabolites in rat urine and plasma for the pharmacokinetic studies.

Growth Promotion of Tobacco Plant by 3-hydroxy-2-Butanone from Bacillus vallismortis EXTN-1

  • Ann, Mi Na;Cho, Yung Eun;Ryu, Ho Jin;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.388-393
    • /
    • 2013
  • It has been well documented that Bacillus vallismortis strain EXTN-1, a beneficial rhizosphere bacterium, could enhance plant growth and induce systemic resistance to diverse pathogens in plants. However, the molecular mechanisms for how the EXTN-1 promote plant growth and induce resistances to diverse pathogens. Here, we show that 3-Hydroxy-2-butanone, a volatile organic compound (VOCs) emitted from the EXTN1, is a key factor for the bacteria-mediated beneficial effects on plant growth and defense systems. We found that the presence of volatile signals of EXTN-1 resulted in growth promotion of tobacco seedlings. The identification and analysis of EXTN-1-secreted volatile signals by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) indicated that a 3-hydroxy-2-butanone could provide not only the plant growth promotion, but also higher resistance against Pectobacterium carotovorum SCC1. These results suggest that a volatile compound released from EXTN-1 enhances the plant growth promotion and immunity of plants.

Antibacterial and Anti-inflammatory Effects of Essential Oil from the Magnolia kobus Flower (목련 꽃 에센셜 오일의 항균 및 항염증 활성)

  • Lee, Jae-Yeul;Jhee, Kwang-Hwan;Yang, Seun-Ah
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.278-284
    • /
    • 2020
  • Magnolia kobus is known to exert various biological effects, such as antioxidant and hypnotic activity. In this study, we investigated the antimicrobial and anti-inflammatory activity of M. kobus essential oil extracted using steam distillation. Its antimicrobial activity was tested against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa by the paper disk diffusion and minimum inhibitory concentration (MIC) methods. Its anti-inflammatory activity was evaluated by measuring its inhibition ratio on the production of nitric oxide (NO) and PGE2 in lipopolysaccharide (LPS)-induced RAW264.7 cells. Its composition was analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that M. kobus essential oil exhibited excellent antibacterial activity against S. aureus, with a clear zone of 18 mm and an MIC value of 0.25 mg/ml. Its clear zones against P. aeruginosa and E. coli were 14 mm and 17 mm, respectively, while its MIC values were 1 mg/ml and 0.5 mg/ml, respectively. The essential oil exhibited no cytotoxicity to the RAW264.7 cells at a concentration of 500 ㎍/ml while showing NO (37.7%) and PGE2 inhibition (24.0%). Its three main fragrance ingredients identified were 3-carene (77.07%), β-elemene (6.92%), and caryphyllene (2.86%). The results suggest that M. kobus essential oil has potential as a cosmetic functional material with antimicrobial and anti-inflammatory effects.

Plant Growth Promotion and Gibberellin A3 Production by Aspergillus flavus Y2H001 (Aspergillus flavus Y2H001의 식물생육촉진과 Gibberellin A3의 생산)

  • You, Young-Hyun;Park, Jong Myong;Kang, Sang-Mo;Park, Jong-Han;Lee, In-Jung;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.43 no.3
    • /
    • pp.200-205
    • /
    • 2015
  • Perilla frutescens var. japonica Hara was collected from farmland in Seongju-gun. Fifteen endophytic fungal strains with different colony morphologies were isolated from roots of P. frutescens. Waito-c rice seedlings were treated with the concentrated culture filtrates (CF) of endophytic fungi for observation of their plant growth-promoting activities. In the results, the CF of Y2H001 fungal strain promoted the growth of the waito-c rice seedlings. The phylogenetic tree of Y2H001 strain was analyzed by the combined sequences of the partial internal transcribed spacer region (ITS) and partial betatubulin gene. Molecular and morphological studies identified the Y2H001 strain as belonging to Aspergillus flavus. In gas chromatography mass spectrometry (GC/MS) analysis of the CF of Y2H001 strain, gibberellic acid (GA) was detected and quantified. Therefore, we describe Y2H001 strain as a new $GA_3$-producing A. flavus based on morphological, molecular characteristics and analysis of secondary metabolite.

Analysis of volatile aroma compounds from vanilla perfume using headspace disk type monolithic material sorptive extraction (시료상층부 원판 형태 단일 다공성 물질을 이용한 바닐라 향수의 휘발성 아로마 성분 추출 분석)

  • Son, Hyun-Hwa;Lee, Dong-Sun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.421-428
    • /
    • 2011
  • In this study, headspace disk type monolithic material sorptive extraction (HS-MMSE) was developed, validated and applied to the analysis of volatile aroma compounds from vanilla perfume by gas chromatography -mass spectrometry (GC/MS). HS-MMSE uses monolithic material (MonoTrap) based on silica bonded with octadecyl silane (ODS) and activated carbon as a sorbent. Aroma compounds was adsorbed onto the MonoTrap in headspace and extracted by only 100 ${\mu}L$ of solvent. Total 12 volatile compounds from vanilla perfume were successfully analyzed using HS-MMSE. The influence of extractive parameters was investigated and optimized, using benzyl acetate, linalyl acetate, vanillin, ethyl vanillin as target compounds. Under the optimum condition, the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of proposed method for the target compounds were obtained within the range of 8.35~13.76 ng and 27.82~45.88 ng, respectively. The method showed good linearity with correlation coefficient more than 0.9888, satisfactory recovery and reproducibility. These results showed that HS-MMSE using disk type MonoTrap is a new promising technique for the analysis of volatile aroma compounds from vanilla perfume.

Composition Analysis and Antioxidant Activities of the Essential Oil and the Hydrosol Extracted from Rosmarinus officinalis L. and Lavandula angustifolia Mill. Produced in Jeju (제주산 로즈마리와 라벤더(Rosmarinus officinalis L., Lavandula angustifolia Mill.)로부터 추출한 essential oil과 hydrosol의 성분 분석 및 항산화 활성)

  • Jeon, Deok Hyeon;Moon, Jeong Yong;Hyun, Ho Bong;Kim Cho, Somi
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.141-146
    • /
    • 2013
  • Constituents of the essential oil (EO)s and hydrosol of rosemary (Rosmarinus officinalis L.) and lavender (Lavandula angustifolia Mill.) were analyzed by gas chromatography-mass spectrometry (GC-MS). The identified major constituents were ${\alpha}$-pinene (40.96%), camphor (34.44%), verbenone (45.31%), and camphor (67.04%) in rosemary EO, lavender EO, rosemary hydrosol, and lavender hydrosol, respectively. The antioxidant activity of EO and hydrosol extracted from rosemary and lavender were evaluated. Both EO showed di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) free radical scavenging activities as well as $Fe^{2+}$ ion chelating activity but no alkyl radical scavenging activity. Rosemary EO showed higher DPPH radical scavenging activity than lavender, whereas lavender EO showed higher $Fe^{2+}$ ion chelating activity. Both rosemary and lavender hydrosols showed alkyl radical scavenging activity, but only lavender hydrosol showed an activity on $Fe^{2+}$ chelating assay. Both rosemary and lavender hydrosols also protected the dermal fibroblast and the HaCaT keratinocytes against $H_2O_2$-induced cytotoxicity.

Determination of benzene, toluene, ethylbenzene and o-xylene in bottled waters by headspace solid-phase microextraction and gas chromatography/mass spectrometry (HS-SPME-GC/MS를 이용한 먹는 샘물 중 벤젠, 톨루엔, 에칠벤젠, 자일렌의 정량)

  • Kim, Jong-Hun
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2011
  • Abstract: The amount of benzene, toluene, ethylbenzene, and o-xylene (BTEX) in 30 kinds of bottled waters purchased from market and 9 kinds of tap waters from home were determined using headspace solid phase microextraction (HS-SPME). The sample was stirred at 1200 RPM G for 4 min using a magnetic bar with $100\;{\mu}m$ PDMS as adsorbent for BTEX. Then it was desorbed from the fiber for 1 min at room temperature. Quantitation was achieved using standard calibration method. The limit of detection was determined as benzene 0.39 (${\pm}0.04$) ng/mL, toluene 0.08 (${\pm}0.04$) ng/mL, ethylbenzene 0.04 (${\pm}0.01$) ng/mL, and o-xylene 0.05 (${\pm}0.02$) ng/mL. Benzene and o-xylene were not detected in any samples, but toluene was detected in 11 samples, and ethylbenzene was detected just in 3 samples among 30 investigated bottled waters. The concentration range of investigated materials for toluene and o-xylene were $0.24({\pm}0.09)\sim2.95\;({\pm}0.08)\;ng/mL$, $0.08({\pm}0.06)\sim0.93({\pm}0.10)\;ng/mL$, respectively.