• Title/Summary/Keyword: Gas chromatography-electron capture detector

Search Result 65, Processing Time 0.034 seconds

A study on removal effect of Endosulfan in soil and aquatic system (수질 및 토양 중 Endosulfan 제거효과에 관한 연구)

  • An, Jung-Hyeok;Lee, Seog-Jong;Lee, Woan;Kim, Joon-Bum;Lee, Gwang-Chun;Kwon, Young-Du;Jeon, Choong;Park, Kwang-Ha
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • In this study, a series of experiments were conducted using a standard solution containing ${\alpha}$ and ${\beta}$-endosulfan to follow the removal effect of residual pesticides on soil and aqueous solution. An analytical method for residual pesticides was established by a gas chromatography equipped Ultra II[$(30m{\times}0.25mm(ID){\times}0.25{\mu}m$] capillary column and a ${\mu}$-electron capture detector(${\mu}$-ECD). Recovery rates of residual pesticides for soil samples were 96-100%. The amount of ${\alpha}$ and ${\beta}$-endosulfan that was spread in the soil was checked for various period of time. It indicated that the amount was reduced to 73 and 61%, respectively. When the water spread amount increased from 10 to 100 mL, ${\alpha}$-endosulfan was eliminated from 45 to 85% and while ${\beta}$-endosulfan from 44 to 88%. Removal rates of ${\alpha}$-endosulfan and ${\beta}$-endosulfan were 99% and 98% respectively within 30 minutes. It was assumed that the organic salts and strong alkali elements contained in the pesticide degradator hydrolyzed the residual pesticide.

Analysis of Half-life Time and Residual Concentration of Ethalfluralin Herbicide in Soils (토양 중 제초제 Ethalfluralin의 잔류 농도와 반감기 분석)

  • Han, Seong Soo;Rim, Yo Sup;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.168-178
    • /
    • 1997
  • The optimum conditions for the residual analysis of the ethalfluralin herbicide on soils were investigated and the residues in soils were determined by gas chromatography with electron capture detector(GC-ECD). The soil samples extracted with methanol and dichloromethane and concentrated. The concentrated phase were redissolved with toluene and analyzed with GC-ECD after separated by cyanosilica gel Sep-Pak cartridge. From the standard addition experiments with 0.1 and 1.0ppm, the average recoveries were 92.8~101.2% and the detection limit was 0.004ppm. The half-life time of ethalfluralin in the soil(A) was 35 days in the laboratory and 7.2 days in the field test whereas it was 45 days and 9.7 days for each in case of soil(B).

  • PDF

Gas Chromatographic Analysis of TDI, MDI and HDI Using 2-Chlorobenzyl Alcohol and 2,4-Dichlorobenzyl Alcohol Derivatives (2-클로로벤질 알코올 및 2,4-디클로로벤질 알코올 유도체를 이용한 TDI, MDI 및 HDI의 가스크로마토그래피 분석)

  • Yun, Ju-Song;Park, Jun-Ho;Lee, Kang-Myoung;Choi, Hong-Soon;Cho, Young-Bong;Koh, Sang-Baek;Cha, Bong-Suk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.222-232
    • /
    • 2006
  • Objectives: The objective of this study was to propose the total isocyanate analytical method which involves derivation of 2,4-toluene diisocyanate(2,4-TDI), 2,6-toluene diisocyanate(2,6-TDI), 4,4'-methylenediphenyl diisocyanate(4,4'-MDI) and 1,6-hexamethylene diisocyanate(1,6-HDI) using 2-chlorobenzyl alcohol(2-CBA) or 2,4-dichlorobenzyl alcohol(2,4-DCBA), and analyzing of hydrolysate of the synthesized urethane with the gas chromatography(GC)/flame ionization detector(FID), GC/pulsed discharge ionization detector-electron capture detector(PD-ECD) and GC/mass selective detector(MSD). Methods: Urethanes were synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI to 2-CBA or 2,4-DCBA. Urethanes was verified by TLC, HPLC/UVD and GC/MSD. For field application, the most suitable condition that 2-CBA coated in glass fiber filter removed completely and urethanes were not removed was searched. 2-CBA generated from hydrolysis of urethanes according to hydrolysis conditions. Diisocyanates were collected on field air and analyzed. Results: Urethanes which were white and solid phase synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI, 1,6-HDI and 2-CBA or 2,4-DCBA. And urethanes were verified by TLC, HPLC/UVD and GC/MSD. The most suitable conditions to remove 2-CBA coated in glass fiber filter were $87^{\circ}C$ and 20 mmHg and urethanes were not removed under same condition. Hydrolysis yields of urethanes were 99 % to 111 %. 2-CBA, the hydrolysate of urethanes was analyzed by GC/FID, GC/PD-ECD and GC/MSD. Conclusions: Simultaneous analysis of 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI deriving with 2-CBA and 2,4-DCBA, along with a total isocyanate analysis, was feasible with GC/FID, GC/PD-ECD and GC/MSD. This result will be a guide of further study on total isocyanate analysis.

Development of Simultaneous Analysis for the Multi-residual Pesticides in the Ginseng Extract using Gas Chromatography (인삼농축액에서 GC를 이용한 잔류농약 동시다성분 분석법의 개발)

  • Shin Yeong-Min;Lee Seon-Hwa;Son Yeong-Uk;Jeong Ji-Yoon;Jeoung Seoung-Wook;Park Heung-Jai;Kim Sung-Hun;Won Young-Jun;Lee Chang-Hee;Kim Woo-Seong;Hong Moo-Ki;Chae Kab-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2006
  • The simultaneous analysis of multi-residual pesticides was developed using a gas chromatography (GC) method. In this study, a simple and reliable methodology was improved to detect 154 kinds of pesticides in sinseng extract sample by using a liquid-liquid extraction procedure, open column chromagraphy and chromatographic analysis by CC electron capture detector (ECD) and GC nitrogen-phosphorus detector (NPD). The 154 kinds of pesticides were classified in 4 groups according to the chemical structure. The extraction of pesticides was experimented with $70\%$ acetone and dichloromethane/petroleum ether in order, and cleaned up via open column chromatography $(3\times30cm)$ packed with florisil $(30g,\;130^{\circ}C,\;12hrs)$. The final extract was concentrated in a rotator evaporator at $40^{\circ}C$ until dryness. Then the residue was redissolved to 2ml with acetone, and analyzed by GC-ECD and GC-NPD. The applied concentration of pesticides was over $1\~10{\mu}g/ml$. The recovery tests were ranged from $70.7\%$ to $115.2\%$ with standard deviations between 0.3 and $5.7\%$ of the standard spiked to the ginseng extract sample (Group $I\~IV$). The limit of detection (LOD) ranged from 0.001 to $0.099{\mu}g/ml$ (Group $I\~IV$). The 9 kinds of pesticides were not detected. The developed method was applied satisfactory to the determination of the 154 kinds of pesticides in the ginseng extract with good reproducibility and accuracy.

Study on the Development of Simultaneous Analytical Method for the Residual Organic Chloride Pesticides by Gas Chromatography (기체 크로마토그래피를 이용한 유기 염소계 잔류 농약 동시 분석 방법 개발에 관한 연구)

  • Kim, Woo-Seong;Lee, Bong-Hun;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.561-567
    • /
    • 1996
  • A method for the simultaneous analysis of 31 residual organic chloride pesticides was studied using gas chromatography. Prepared analytical samples were injected to gas chromatography (HP 5890 Series II plus) on the Ultra-2 column with ECD. The packing materials for column were changed as the following reagents ; florisil and alumina N, The residual solution was loaded to column and was elected pith erection solvents ; ether : benzene (2 : 8) solution, hexane : benzene (1 : 1) solution, dichloromethane, acetone, and methanol. The analytical results showed that 6 kinds of organic chlorides were not detected when florisil (first condition) was used as the column packing material. The nondetected 6 kinds of organic chlorides in the first analytical condition were detected and the recoveries of thrin-pesticides were increased, in particular, captan and captafol, but the recoveries of benzene hexachloride compounds were decreased when dichloromethane and methanol were added as elution solvents (pac'king material was florisil as in the first condition). The recoveries of dichlornuanid, chlorofenvinfos, folpet, and dicofol were increased and that of aldrin was increased, but those of captan and captafol were not good when alumina N was used as the packing material. To detect simultaneously thrin-pesticides, captan, and captafol, florisil and alumina N were used as the packing materials. The elution result showed that captan and captafol were not detected. This was because the column was activated insufficiently. The analytical method was the best (31 kinds of organic chlorides in the residual pesticides were detected sharply and showed high sensitivity) when the column (packing materials were florisil and alumina N: together) was fuliy activated and the impurities were removed using various elution solvents.

  • PDF

Analysis of Trace Levels of Halonitromethanes (HNM) in Water using Headspace-SPME and GC-ECD (Headspace-SPME와 GC-ECD를 이용한 수중의 미량 Halonitromethane (HNM)류 분석)

  • Kang, So-Won;Son, Hee-Jong;Seo, Chang-Dong;Kim, Kyung-A;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.293-302
    • /
    • 2015
  • Halonitromethanes (HNMs) are one of the most toxic groups of disinfection by-products. Recently, various studies have been fulfilled. An automated headspace-solid phase microextraction (SPME) gas chromatography/electron capture detector (GC-ECD) technique was developed for routine analysis of 9 HNMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 90 ng/L to 260 ng/L and from 270 ng/L to 840 ng/L for 9 HNMs, respectively. Matrix effects in tap water and sea water were investigated and it was shown that the method is suitable for the analysis of trace levels of HNMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.

Determination of Residual Concentration and Half-life Time in Soils of Imidazole Fungicide Prochloraz (Imidazole계 살균제 Prochloraz의 토양 중 잔류량과 반감기분석)

  • Choi, Yong Hwa;Han, Seong Soo;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2002
  • The residual analysis and half-life time of imidazole fungicide prochloraz in soils (silty clay) were investigated by gas chromatography equipped electron capture detector (GC-ECD). The soil samples were extracted acetone/hexane(1:1) solvent and analyzed after separated by $LC-NH_2$ Sep-Pak solid column. Linear sensitivity of standard calibration curve was Y = 268.8600X + 0.0664, $R^2=0.9998$ between 0.05~1.00 ng. The detection limit was 0.02 mg/L and the average recoveries were 94.5~97.3% from the standard additional experiments with 0.10 and 0.40 mg/L. The half-life time was 24.4 days in room laboratory and 7.6 days in the field test soil.

Gas Chromatography Residue Analysis of Bifenthrin in Pears Treated with 2% Wettable Powder

  • Choi, Jeong-Heui;Liu, Xue;Kim, Hee-Kwon;Shim, Jae-Han
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.41-45
    • /
    • 2009
  • This study was conducted to monitor the level of bifenthrin residues in pear sprayed with 2% bifenthrin wettable powder (WP) at the recommended rate at four different schedules prior to harvest. The target analyte was extracted with acetone, partitioned into dichloromethane, and then purified by florisil chromatographic column. The residue determination was performed on a DB-5 capillary column using GC with electron capture detector (ECD). Linearity of this method was quite good ($r^2$ = 0.9951) in the concentration ranged from 0.2 mg/kg to 10 mg/kg. Recovery test was carried out at two concentration levels, 0.2 mg/kg and 1.0 mg/kg, in three replicates, and their rates were from 82.9% to 107.2%. No quantitative bifenthrin was detected in pear of all kinds of treatments including the treatment sprayed 4 times until 7 days before harvest. This sensitive and selective method can be used to monitor the trace residual amounts of bifenthrin in pear in a quite low concentration level.

Levels of organochlorine pesticides and PCB congeners in Korean human tissues

  • Yoo, Young-Chan;Lee, Sang-Ki;Yang, Ja-Youl;Kim, Ki-Wook;Lee, Soo-Yeun;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.283.2-283.2
    • /
    • 2002
  • Organochlorine pesticides and polychlorinated biphenyls (PCBs) have been used intensively in agriculture and industry for a long time. They belong to a group of contaminants whose occurrence in the environment is a serious concern to environmental chemists and toxicologists due to their resistance to degradation in the environment as well as their potential toxicity. Also. the lipophilic characteristics of these substances are responsible for their ability to bioaccumulate in tissues and organs rich in lipids of men and animals through food chain. Therefore, the measure of the levels of organochlorine pesticides and PCBs in human tissues are good markers in detemining the extent to exposure and evaluating the hazards. This study was preformed to compare concentrations of organochlorine pesticides(${\alpha}-BHC, {\beta}-BHC, {\gamma}-BHC, {\delta}-BHC$, p.p'-DDT,p.p'-DDD,p.p.'-DDE. endrin. dieldrin. aldrin) and seven marker PCBs(PCB nos. 28. 52. 101. 118. 138. 153. 180) in liver. kidney cortex, lung blood and adipose tissue collected at autopsies of 10men and 10 women using gas chromatography equipped with electron capture detector to express the data on a lipid adjusted basis. From the results, the significant differences in the levels of organochlorines of PCBs between sexes, districts where they had lived and ages were also investigated.

  • PDF

Monitoring of Pesticide Residues and Risk Assessment for Medicinal Plants (국내 유통 약용식물 중 잔류농약 모니터링 및 위해성 평가)

  • Ahn, Ji-Woon;Jeon, Young-Hwan;Hwang, Jeong-In;Kim, Jeong-Min;Seok, Da-Rong;Lee, Eun-Hyang;Lee, Sung-Eun;Chung, Duck-Hwa;Kim, Jang-Eok
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • This study was conducted to monitor residual pesticides in ginseng and balloon flower roots and to assess their risk to human health. All of 112 samples consisted of ginseng and balloon roots were purchased from traditional domestic markets and supermarkets in nine provinces of Korea in 2012. Multi-residue analysis of 122 pesticides was conducted and the analysis was performed by gas chromatography-electron capture detector, gas chromatography- nitrogen/phosphorus detector, and high-performance liquid chromatography. Seven pesticides were detected in 12 root samples and the detection rate was 10.7%. The detected twelve root samples were 10 ginseng root samples and 2 balloon root samples. Pesticides detected in root samples were procymidone, kresoxim-methyl, endosulfan, cypermethrin, tralomethrin, tetraconazole and chlorfluazuron. Among them, two pesticides as tetraconazole in a balloon flower root and cypermethrin in a ginseng root exceeded the recommended maximum residue limit set by Korea Food and Drug Administration. Five pesticides detected from 10 root samples were identified as unregistered pesticides in Korea. In order to do risk assessment with Korean medicinal plant consumption, estimated daily intake of residual pesticides were determined and compared to acceptable daily intake, referring to %ADI values. The range of %ADI values was from 0.006% to 0.333%. Taken together, it demonstrates the pesticides found in the two root samples were below the safety margin, indicating no effect on human health.