• Title/Summary/Keyword: Gas adsorption efficiency

Search Result 125, Processing Time 0.028 seconds

Study on the development of small-scale hydrogen production unit using steam reforming of natural gas (천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구)

  • Seo, Dong-Joo;Chue, Kuck-Tack;Jung, Un-Ho;Park, Sang-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

Adsorption and Desorption Characteristics of Methyl iodide on Silver ion-Exchanged Synthetic Zeolite at High Temperature

  • Park, Geun-Il;Park, Byung-Sun;Cho, Il-Hoon;Kim, Joon-Hyung;Ryu, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.504-513
    • /
    • 2000
  • The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver ion-exchanged zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver ion-exchanged level for the effective removal of methyl iodide at temperature up to 38$0^{\circ}C$. The degree of adsorption efficiency of methyl iodide on silver ion-exchanged zeolite is strongly dependent of silver ion-amount and process temperature. The influence of temperature, methyl iodide concentration and silver ion-exchanged level on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It would be facts that the effective silver ion-exchanged level was about 10 wt%, based on the degree of silver utilization for the removal of methyl iodide.

  • PDF

Preparation of Hybrid Cation Ion Exchange Fibers by Web Spray and Their Adsorption Properties for Ammonia Gas (Web Spray 법을 이용한 복합 양이온교환섬유의 제조 및 암모니아 흡착특성)

  • Park, Seong-Wook;Lee, Hoo-Kun;Rhee, Young-Woo;Jung, Boo-Young;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.479-484
    • /
    • 2007
  • In this study, the hybrid ion exchange fibers (HIEF) were prepared by using web spraying muthod with hot melt adhesive. Characteristics of HIEF and their adsorption properties for ammonia gas were investigated. The ion exchange capacity (IEC) of HIEF was increased with increasing the resin contents and their values were higher than those of pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with an increase in packing density of hybrid ion exchange fabrics in the column. The adsorption breakthrough time was 270 min, which was slower than those of the resin and fibers. The maximum value of adsorption for ammonia gas was 94%. The breakthrough time was also increased with increasing the concentration and flow rate of ammonia gas. The reaction constant(k) for ammonia gas was increased with increasing the concentration and flow rate of the gas, while it was decreased an the mass was increased.

Characterization of $CO_2$ Separation in Landfill Gas by Using Adsorbent (흡착제를 이용한 매립지가스 내 $CO_2$ 분리 특성)

  • Heo, Rye-Hwa;Yoo, Young-Don;Kim, Mun-Hyun;Kim, Hyung-Taek;Choi, Ik-Hwan
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.46-51
    • /
    • 2009
  • The purpose of this study is to investigate selective adsorption of $CO_2$ from LFG (Landfill gas) by using commercialized NaX-type zeolite adsorbent under the ambient temperature and pressure. The experiment of $CO_2$ adsorption was carried out by using simulated LFG. The $CO_2$ adsorption capacity and separation efficiency of NaX-type adsorbent were investigated by analyzing gas flow rate and gas composition at inlet and outlet of the adsorption reactor. The adsorbed $CO_2$ were desorbed under decompression condition which 0.5 Torr or by air purge. Through the result to use simulated LFG, when the method of VSA was used, 73.2~75.3 mg of $CO_2$ was adsorbed per 1 g commercial adsorbent, when the method of air purge was used, 78.4~83.2 mg of $CO_2$ was adsorbed per 1 g of commercial adsorbent.

  • PDF

Adsorption Characteristics of Toluene Gas Using Fluorinated Phenol-based Activated Carbons (불소화 처리된 페놀계 활성탄소를 이용한 톨루엔 가스흡착 특성)

  • Kim, Min-Ji;Jung, Min-Jung;Kim, Min Il;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.587-592
    • /
    • 2015
  • Activated carbons (ACs) were treated by fluorination to improve the adsorption property of toluene gas among volatile organic compounds (VOCs). The pore characteristics and surface properties of these activated carbons were evaluated by BET and XPS and the adsorption property and removal efficiency of toluene gas was investigated by gas chromatography. The breakthrough time of fluorinated ACs was increased about 27% compared to that of untreated ACs when the toluene gas of 100 ppm was flowed at a flow rate of $300cm^3/min$. Fluorinated AC of 0.1 g adsorbent totally adsorbed toluene gas in 100 ppm to 100 % during the adsorption time in 19 h. These results can be used as a treatment technology or removal of carcinogenic materials such as toluene.

Changes of Adsorption Properties of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도 차이에 의한 목질탄화물의 흡착성 변화)

  • Jo, Tae-Su;Ahn, Byoung-Jun;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.45-52
    • /
    • 2005
  • This research was performed to evaluate adsorption behavior of woody charcoals obtained from wood powder, fiber and bark of spruce (Abies sibirica Ledeb). The wood materials were carbonized at various temperatures for 1 hour using experimental rotary kiln without any inert gas. The adsorption capacity of iodine and toluene, specific surface area and removal efficiency of acetic acid and ammonia gas of those charcoals were measured. The higher was the temperature for carbonization, the lower yields of charcoals were. Ash content of bark charcoal was higher than that of wood powder charcoal or fiber charcoal. Elemental analysis of woody charcoal revealed that the content of carbon was gradually lincreased as carbonization temperature was higher. When carbonization temperature was higher, adsorption capacity of woody charcoals for iodine was much improved. Wood powder charcoal and fiber charcoal were more effective for iodine adsorption rather than bark charcoal. Capacity of toluene adsorption was the highest in the charcoal of $600^{\circ}C$. Charcoals produced at high temperature efficiently removed acetic acid gas, while charcoals carbonized at low temperature such as $400^{\circ}C$ were proper to remove ammonia gas. This difference may be explained that the acidity of charcoals depends on the carbonization temperature: charcoals of low temperature indicate acidic property, while those of high temperature turned to alkaline.

Development and efficiency of filter device for the emission reduction from the diesel engine in fishing boat (어선용 디젤엔진의 배출가스 저감 필터 개발과 저감 효율)

  • Lee, Kyounghoon;Kim, Sang-Keun;Kim, Seonghun;Yang, Yong-Su;Park, Seong-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • The performance of five kind adsorbents, which can reduce nitrogen oxide (NOx) from the diesel engine occupying 85% of the fishing boat, was carried out and the emission reduction filter was manufactured and evaluated in the adsorption efficiency of the emission gas for 240 KW diesel portable generator. As a NOx emission filter made of mordenite which has an excellent cation exchange capacity was manufactured by ball type adsorbents having excellent specific surface area. The adsorption efficiency of mordenite material applying the emission reduction filter began to show up at the operating time 10 minutes in comparison with the activated carbon and zeolite materials, and it was exposed to continue until 100% capability with passing by 20 minutes. So the adsorption efficiency of the NOx reduction filter consistently maintained at the averaged 80%.

Numerical Analysis on Flow Characteristics in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (백필터를 활용한 흡착/촉매 통합공정 시스템의 반응기 내 유동특성 및 체류시간에 대한 수치해석적 연구)

  • Choi, Choeng-Ryul;Koo, Yoon-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.203-213
    • /
    • 2007
  • Numerical analysis has been performed to understand flow characteristics in the reactor with bag filters in an integrated adsorption/catalytic process which can treat dioxin and $NO_{x}$ together. Computational fluid dynamics technique was employed with Euler-Lagrangian model to consider flue gas and activated carbon particles simultaneously, so that residence time of flue gas and activated carbon particle could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle's size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas and activated carbon particles, and distribution of activated carbon have been obtained from the numerical analysis. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome (새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향)

  • Lim, Hyung Soon;Kim, Min-Ji;Kong, Eun Young;Jeong, Jin-do;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.312-317
    • /
    • 2018
  • In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.

Flow Characteristics with Inflow-Duct Types in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (연소 배출가스의 유입방식에 따른 백필터를 활용한 흡착/촉매 통합공정 시스템 반응기 내 유동특성)

  • Choi, Choeng-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.425-434
    • /
    • 2007
  • An integrated adsorption/catalytic process has been considered to treat dioxin and $NO_x$ simultaneously. The process consists of a cyclone and a reactor with nine bag filters. In this study, numerical analysis has been performed to understand flow characteristics with inflow-duct types in the reactor. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution and distribution of activated carbon have been obtained from the numerical analysis. Also trace length and residence time of flue gas, residence time of activated carbon particles have been calculated directly. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The flow characteristics in the reactor were strongly influenced by inflow-duct types. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.