• Title/Summary/Keyword: Gas absorption refrigeration

Search Result 44, Processing Time 0.017 seconds

Performance Analysis of Microturbine CHP System with Absorption Chiller (흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석)

  • Yun, Rin;Han, Seung-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.486-491
    • /
    • 2008
  • The performance of a microturbine CHP system equipped with an absorption chiller was analyzed by modeling it. The microturbine with recuperator was simulated with the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microturbine were simulated. These results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type with a solution heat exchanger. The heat input into the generator was proportional to the heat transfer rate and the UA values of the heat exchangers of the absorption chiller. Furthermore, the COP of the absorption chiller increased with respect to an increase of the heat input into the generator, under the sufficient evaporator capacity condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller doubled, and the UA values for evaporator and condenser increased by factors of x3.9 and x3.4, respectively, under the same COP condition.

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

Dynamic Simulation of Transient Operations of a Solar Power-Assisted Absorption Chiller (태양열 보조열원을 이용한 흡수식 시스템의 동적 시뮬레이션에 의한 과도운전 특성 평가)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.78-85
    • /
    • 2010
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flow rate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

Analysis of Energy Consumption of Buildings in the University (대학교 건축물의 에너지소비 특성 및 변화 추이 분석:서울소재 A대학교의 에너지 소비 실태를 중심으로)

  • Park, Kang-Hyun;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.633-638
    • /
    • 2011
  • Increasing demand for comfortable indoor environment and air-conditioning demand is also increasing. Building energy consumption in university which is made up of many different kinds factor was researched. Central control air-conditioning systems are being replaced with individually controlled air-conditioning system. The amount of growth of electricity consumption is due to the increasing demand of EHP. Conversely, the demand for absorption chiller-heater is shrinking. Winter and in summer a lot of electricity and gas usage. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because EHP and the absorption chiller-heater are used at the same time in some of the buildings. To use energy efficiently is needed additional research about environmental impact, economic evaluation.

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF

Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature (5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석)

  • 윤희정;김성수;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

Instability Analysis of Marangoni Convection for $NH_3-H_2O$ Absorption Process Accompanied by Heat Transfer (열전달을 수반하는 $NH_3-H_2O$ 흡수과정에서의 Marangoni 대류 불안정성 해석)

  • 김제익;최창균;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • Convective instability driven by surface tension is analyzed in an initially quiescent water absorbing ammonia gas with heat transfer using the linear stability analysis. The propagation theory is adapted to find the critical conditions of the onset of Marangoni convection. In this theory, the solutal penetration depth is chosen as the length scale factor. The results show that the liquid layer becomes more stable with decreasing the Schmidt number and increasing the Lewis number. It is also found that there is a critical Biot number to make the liquid layer be most unstable, and there is a linear relationship between the thor-mal Marangoni number and the solutal Marangoni number.

Stability Analysis of Marangoni Convection for $NH_3\;-H_2O$ Absorption Process (전파이론을 통한 $NH_3\;-H_2O$ 흡수과정의 마란고니 대류 안정성 해석)

  • 최창균;김제익;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.450-455
    • /
    • 2002
  • Convective instability driven by surface tension is analyzed in an initially quiescent water absorbing ammonia gas using the linear stability theory. The propagation theory is adapated to find the critical conditions of the onset of solutal Maragoni convection. In this theory, the solutal penetration depth is chosen as the length scale factor. The results show that the liquid layer becomes more stable with decreasing the Schmidt number It is interesting that for a smaller Biot number than 100, the system becomes stable with decreasing Bi but for a larger Bi, it becomes unstable with decreasing Bi.

Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube (수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향)

  • 황규대;박노성;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF