• Title/Summary/Keyword: Gas Viscosity

Search Result 270, Processing Time 0.027 seconds

Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products (팜 부산물에 존재하는 무기성분이 급속열분해 생성물의 특성에 미치는 영향)

  • Moon, Jaegwan;Lee, Jae Hoon;Hwang, Hyewon;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.629-638
    • /
    • 2016
  • In this study, the effect of inorganic constituents on the physicochemical properties of pyrolytic products produced from empty fruit bunch (EFB) by fast pyrolysis were investigated. Inorganic constituents were removed from the EFB by means of washing treatment with hydrofluoric acid (HF) and distilled water (D.I water). Ash content decreased from 6.2 wt% (EFB) to 2.4 wt% (HF-EFB) and 3.5 wt% (D.I-EFB), respectively. As a result of the inorganic component, a quantity of potassium in EFB has showed the highest removal efficiency in both HF and D.I water (HF: 80.3%, D.I water: 72.8%). Fast pyrolysis was performed with demineralized EFB in the fluidized bed reactor under the temperature of $500^{\circ}C$ at the residence time of 1.3 sec. The yield of bio-oil was determined to 57.3 wt% for HF-EFB and 52.1 wt% for D.I-EFB, respectively. Biochar yield decreased whereas yield of non-condensable gas increased with decreasing inorganic content of EFB. Water content decreased from 26.9% (EFB) to 9.9% (HF-EFB) and viscosity increased from 16.1 cSt (EFB) to 334 cSt (HF-EFB).

A Study on Characteristics of Exposure to Tetrahydrofuran of Manufacturing and Handling Workers (테트라하이드로퓨란 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Chio, Ho Chun;Hong, Jwa Ryung;Lee, Gye Young;Kim, Doo Ho;Park, Chung Yill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • Objectives: Tetrahydrofuran (THF) is a colorless, water-miscible organic liquid with low viscosity at standard temperature and pressure. THF has been used as a solvent and a precursor for various syntheses of polymers. However, THF is known to irritate to the eyes, skin and mucus membranes. Overexposure by inhalation, ingestion or skin contact may produce nausea, dizziness, headaches, respiratory irritation and possible skin burns. The purpose of this study is to evaluate of the worker exposure and characteristics of workers in the workplaces that use or manufacture THF. Methods: Sixteen factories in Korea, which manufacture or use THF, were selected for this study and a total of 130 air samples including 104 time-weighted average (TWA) samples and 26 short-term exposure limit (STEL) samples, were collected. Air samples were collected with charcoal tube (100mg/50mg) and analyzed by gas chromatograph/flame ionization detector(GC/FID). Results: The TWA concentration of THF was 16.05ppm (GM) at PS script printing, 2.32ppm (GM) at PVC stabilizer, 1.03ppm (GM) at Lithium triethylborohydride, 0.63ppm (GM) at Polytetramethylene ether glycol(PTMEG), 0.42ppm (GM) at Manufacturing THF, 0.13ppm (GM) at Glue and 0.12ppm (GM) at synthetic rubber/resins. Two out of sampes for PS script printing exceeded 50ppm as 8-hour exposure limit of MOEL. The short term exposure to THF was 54.77ppm (GM) at PS script printing, 17.10ppm (GM) at PTMEG, 13.76ppm (GM) at Manufacturing THF, 2.86ppm (GM) at Lithium triethylborohydride, 0.87ppm (GM) at synthetic rubber/resins and 0.13ppm (GM) Glue. We found that the highest exposure process for both the TWA and STEL samples was PS script process. Two samples exceeded 100ppm as short term exposure limit of Ministry of Employment and Labor(MOEL). Conclusions: Characteristic of STEL concentration for THF is considerably different from TWA concentration in workplaces because workers could exposure high concentration of THF in a moment when they work irregularly schedule. So exposure controls for momentary works have to be prepared, and considered the skin absorption and inhale of THF.

A Study of Weather Resistance on Dancheong Ground Treatment of Tranditional Wooden Building in Korea (한국 목조건축물 단청 바탕처리에 대한 내후성 연구)

  • Kim, Young Kyun;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.480-493
    • /
    • 2019
  • In this study, the method for processing glue and glue-alum sizing from the dancheong ground treatment was evaluated with respect to weather resistance, and its effect on the conservation of dancheong was analyzed. Viscosity and pH of the glue and glue-alum specimen were measured and classified into three categories(none layer, glue layer, and glue-alum layer), which were further classified according to low concentration(four times for 2%) and high concentration(once for 10%). The base layer formation was subsequently classified into three categories based on pigment adoption, namely, Noerok(celadonite), Seokganju(terra rossa), and Jangdan(red lead). The completed specimen was subjected to a changing-environment experiment for evaluating weather resistance and observing the surface. Color variations were analyzed before and after the experiment. The results indicate that glue-alum sizing comprising 5% alum or 7% alum has strong acidity that can affect the life of dancheong, and the high level of 7% alum makes it difficult to create a solid coating layer. After ultraviolet irradiation, the specimen with 7% alum changes its color to yellow. Furthermore, after moisture absorption and drying, cracks can be observed on the entire specimen surface that corroborate the physical change. Additionally, gas-based corrosion causes marginal surface changes. Hence, the formation of a stable coating layer can be achieved by incorporating a low concentration glue solution that is almost neutral, and the application of glue-alum sizing having 2% concentration can aid in the conservation of dancheong.

Wax Appearance Temperature Measurement of Opaque Oil for Flow Assurance in Subsea Petroleum Production System (해저 석유 생산시스템 내 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 측정법)

  • Lim, Jong-Se;Back, Seung-Young;Kang, Pan-Sang;Yul, Seung-Ryul;Kim, Hyo-Sang;Park, Ji-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.185-194
    • /
    • 2012
  • Deepwater oil is becoming more attractive because most onshore and shallow water oil is developing or developed. With the on-going trend to deepwater oil developments, flow assurance problems which prevent oil flow from reservoir to processing facilities are becoming an issue because deposited material can be occurred in case oil is exposed to very different environment from reservoir. Wax deposition which is one of flow assurance problems can be a major technical and economic issue because it is very sensitive to temperature. In order to predict and mitigate wax problems, the precise measurement of wax appearance temperature (WAT) which is the starting temperature of wax precipitation is very important. Various methods have been suggested for WAT measurement of opaque oil because there is no standard method for opaque oil. In this study, the WAT of opaque oil samples was measured using viscosity measurement method, differential scanning calorimetry, filter plugging method, and pressurized filter plugging method. Wax deposition test and high temperature gas chromatography analysis were applied to verify measured WAT. As a result of study, the WAT of opaque oils was successfully measured and verified. If WAT measurement methods of opaque oil related to oil characteristics is systematized using the results of this study, it can be a valuable tool for WAT measurement of opaque oil and flow assurance related to wax deposition.

Study of FAME components and total contents on Micro-algal Biodiesel derived from Dunaliella tertiolecta (Dunaliella tertiolecta를 이용한 미세조류 유래 바이오디젤의 FAME 성분 특성 연구)

  • Lee, Don-Min;Min, Kuyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.320-328
    • /
    • 2014
  • Biodiesel has very similar physical properties (density, kinematic viscosity) and has even higher cetane number compare with conventional diesel. There are no necessity to change or modify the infra-structure & engine system. It is known that fatty acid methyl ester (FAME) is oxygen-contained components increasing the combustibility, biodegradability and reduced the exhaust harmful gas. These things made the biodiesel more popular as an alternative diesel fuel. But biodiesel's sources are controversial issues about $CO_2$ reduction effect at this time because those mainly come from edible plants such as soy, palm, rapeseed already spent lot of $CO_2$ to cultivate. Whereas micro-algae is focused because they are inedible and has rapid growth rates & high carbon-dioxide adsorption rate per area. In this study, we analyze the each FAME components using $GC{\times}GC$-TOFMS in stead of GC-FID and verify the previous total FAME contents method's applicability through the micro algal biodiesel derived from Dunaliella tertiolecta.

Volatile Aromatic Compounds and Fermentation Properties of Fermented Milk with Buckwheat (메밀을 첨가한 발효유의 향기성분과 발효특성에 관한 연구)

  • Lee, Beom-Seon;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • We aimed to improve the flavor quality of plain yogurt, which is known to be sour and less desirable in flavor, varying concentrations of a buckwheat saccharification solution (BSS) were added to milk, followed by fermentation with commercially available mixed strains of lactic acid bacteria. Volatile compounds were analyzed using the gas chromatography-headspace-solid phase microextraction (GC-HS-SPME) method. Fermentation properties, including pH, titratable acidity, viable cells, viscosity, and color value were also measured. Eleven volatile compounds were identified with GC-MS. Of which, diacetyl, butanoic acid, and 2-heptanone proportionally increased as the levels of BSS increased. Undesirable compounds such as acetic acid and 2-butanone, decreased as BSS concentration increased. Fermentation properties were significantly altered with the addition of BSS. Our findings indicate that the flavor quality of plain yogurt can be improved by adding BSS for fermentation, with an additional health benefit from buckwheat.

LES Investigation on The Cryogenic Nitrogen Injection of Swirl Injector Under Supercritical Envionment (초임계 환경에서 와류형 분사기의 극저온 질소 분사 LES 연구)

  • Kang, JeongSeok;Heo, JunYoung;Sung, Hong-Gye;Yoon, YoungBin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.343-351
    • /
    • 2016
  • Cryogenic spray characteristics of a nitrogen swirl injector operating in supercritical environment have been numerically investigated. By comparing the equation of states(EOS) used for supercritical condition, SRK EOS was applied to predict the nitrogen thermodynamic property under supercritical environment. A Chung's method was implemented for the calculation of viscosity and conductivity and Takahashi's correlation based on Fuller's Theorem was implemented for the calculation of diffusion coefficient. By injecting the nitrogen with 5 bar differential pressure into 50 bar chamber filled with nitrogen, numerical simulation has been conducted. The dynamic Smagorinsky sub-grid scale (SGS) model has been compared with the algebraic Smagorinsky SGS model using FFT frequency analysis. The instability at the liquid film and gas core inside injector and the propagation of pressure oscillation into the injector has been investigated. The spreading angle of swirl injector obtained by numerical calculation has been validated with experimental result.

Nonrandom Combination of Fatty Acid and Alcohol Moieties in Wax Esters from Liza Carinata Roe (등줄숭어 란유의 Nonrandom 분포를 한 왁스에스테르 조성에 관한 연구)

  • Joh, Yong-Goe;Lee, Kyeong-Hee;Cho, Yeon-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.624-632
    • /
    • 1989
  • Lipids of Liza carinata roe were extracted and separated into detailed lipid classes by column chromatography. About 57-62% of the total lipids consisted of wax esters in which saturated and unsaturated fatty alcohols combined with fatty acids with up to six double bonds. Between the even-numbered wax ester peaks in gas-liquid chromatography, ones with odd chain lengths such as C31, C33 and C35 were eluted in appreciable amounts. Isomers composed of different fatty acids and alcohols at a given chain length were not resolved on 1.5% OV-17 column. The principal component of wax esters in sample A were C32, C34 and C30 (45.0%, 19.2%, and 12.2%), followed by C36 and C38 length (9.5% and 4.7%), while those in sample B were mainly occupied by C34, C32 and C36 length (36.3%, 31.4% and 14.5%) with minor components C30 and C38 length (5.2%, and 3.4%). The wax esters were not a random combination of constituent fatty acids and alcohols. With increase in boiling temperature the wax esters increased slightly in viscosity over the unboiled, showing a tendency toward randomness, and finally were completely randomized at $360^{\circ}C$ for 40 minutes. The enzymes involved in wax ester biosynthesis seemed to have high selectivity for chain length of fatty acids and alcohols.

  • PDF

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.