• Title/Summary/Keyword: Gas Viscosity

Search Result 269, Processing Time 0.024 seconds

Review on the chemicals used for hydraulic fracturing during shale gas recovery (쉐일가스 생산을 위한 수압파쇄에 사용되는 화학물질)

  • Kang, Byoung-Un;Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.517-524
    • /
    • 2014
  • Two key technologies of horizontal drilling and hydraulic fracturing are recognized to achieve the rapid growth of shale gas production, in specific, in the United States during last decade. The claims between environmentalists and oil companies have been debating in terms of water contamination. Nowadays, voluntary publication of chemicals from shale gas players are available in the website, FracFocus. This paper introduces chemicals that are currently used in hydraulic fracturing process. Among chemicals, guar gum and guar derivatives are dominantly consumed to increase the viscosity of hydrofracking fluids. The role of additional additives, such as breakers and biocides, is presented by explaining how they cut down the molecular structure of guar gum and guar derivatives. In addition, crosslinking agent, pH controller, friction reducer, and water soluble polymers are also presented.

Experimental Study of Diluted Engine Oil Characteristics by Diesel Fuel (경유가 혼입된 엔진오일의 특성에 관한 실험적 연구)

  • Kim Han Goo;Park Tae Sik;Kim Chung Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.233-236
    • /
    • 2004
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oil by diesel fuel and its effects on engine components. Especially, engine oil was made to have $15\%$ fuel content. To predict existing diesel fuel content in engine oil after test was used the viscosity calibration curve. About $54\%$ percent of diesel fuel in diluted engine oil was distillated by various paths related to reciprocating motion of piston and the rest diesel fuel plays an important role for decreasing engine oil viscosity. Test results show that lowered engine ell viscosity by diesel fuel dilution become a reason of increasing engine elements wear, Therefore, this caused the quantity of blow-by gas to increase and main gallery pressure to decrease.

  • PDF

The Viscosity Change of ABS Resin According to Inert Gas Amount (가스의 용해량에 따른 ABS 수지의 점도 변화)

  • 정태형;하영욱;정대진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • Conventional foaming process has defects such as lower mechanical properties than ur~foaming material due to non-uniform cell distribution and environmental pollution problem caused by chemical blowing agency. So, a new foaming process such as Microcelluar plastics has been introduced to use inactive gases as a foaming agency. In order to apply Microcellular plastics for mass production process system such as extrusion, injection molding and blow molding, it needs to predict the change in material properties of polymer according to the amount of meltingas. In Polymer molding applying Microcelluar plastics, the change of viscosity among several material properties is the most important factor. Therefore, this paper is aimed to establish the method which not only finds out but also predicts the change of viscosity of ABS(Acrylonitri1e Butadiene Styrene) resin according to inert gas amount in extrusion molding.

  • PDF

Thermodynamic Empirical Equations for Physical Properties of Inert Gas Mixtures (불활성 기체 혼합물의 물성에 관한 열역학적 실험식)

  • 김재덕;여미순;이윤우;노경호
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.43-49
    • /
    • 2003
  • For the inert gases of Ar, $N_2$and $CO_2$, the empirical equations of the gas mixture were correlated in terms of saturated pressure, density and viscosity. They were obtained by regression analysis based on the mixing rule. The empirical equation of saturated pressure was assumed as the first order function of temperature. The empirical form of density was expressed as compressibility factor and saturated pressure while the empirical equation of viscosity was formulated as a power function of temperature. This empirical equations of the physical properties were obtained in the composition of Ar, $N_2$and $CO_2$, 40/50/10(mol. %).

SPHERICALLY SYMMETRIC ACCRETION WITH VISCOSITY (점성에 의한 구대칭 강착)

  • YOO KYE HWA
    • Publications of The Korean Astronomical Society
    • /
    • v.17 no.1
    • /
    • pp.11-14
    • /
    • 2002
  • Our examination of the relations of spherically symmetric accretion on a massive point object to viscous drag, neglecting gas pressure and using self-similar transformation, shows the behaviors of the asymptotic solutions? in the regions near to and far from the center. The viscosity reduces the free-fall velocity by the factor $(1\;+\;\zeta) ^{-1}$, and causes flattening in the density distribution. Therefore, the viscosity leads to the reduction of the mass accretion rate.

A Paradigm for the Viscosity of Fluids

  • Kim, Won-Soo;Chair, Tong-Seek;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.213-217
    • /
    • 1988
  • A new paradigm for the viscosity of fluid is presented by considering the fact that the viscosity is equal to the shear stress divided by the shear rate. The shear stress is obtained from the sum of kinetic and internal pressures of fluid, and the shear rate is found from the phonon velocity divided by the mean free path of the phonon. The calculated viscosities for various simple substances are in excellent agreements with those of the observed data through the wide temperature range covered both of liquid and gas phase.

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

Experimental Study on the Tribological Characteristics of Diluted Engine Oil by Diesel Fuel (디젤유가 혼입된 엔진오일의 트라이볼로지 특성에 관한 실험적 연구)

  • Kim, Han-Goo;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.159-164
    • /
    • 2005
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oils in which contains diesel fuels and its tribological effects on engine components. In this study, diluted engine oils with $10\%,\;15\%,\;and\;20\%$ of initial fuel content rate have been used for measuring the viscosity reduction rate, blow-by gas increment rate, main gallery pressure reduction rate, and fuel content rate in engine oils. These parameters are strongly related to the tribological characteristics of key engine components. The kinematic viscosity of engine oils in which is contained by diesel fuels from $10\%\;to\;20\%$ in oils is decreasing to approximately $54\%$ of initial diluted fuel-oil volume ratios. The experimental results show that the distillated engine oil decrease the viscosity of engine oil and its oil film stiffness, and increase the wear rate of rubbing parts of engine components. Thus we recommend that the containing volume rate of fuels in engine oils should be restricted to $3\~4\%$ for a sophisticated Diesel engine and $5\~7\%$ for a standard one.

Electrospun Non-Directional Zinc Oxide Nanofibers as Nitrogen Monoxide Gas Sensor (전기방사법에 의해 합성된 무방향성 산화아연 나노섬유의 일산화질소 가스 감지 특성)

  • Kim, Ok-Kil;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.609-614
    • /
    • 2012
  • We report on the NO gas sensing properties of non-directional ZnO nanofibers synthesized using a typical electrospinning technique. These non-directional ZnO nanofibers were electrospun on an $SiO_2$/Si substrate from a solution containing poly vinyl alcohol (PVA) and zinc nitrate hexahydrate dissolved in distilled water. Calcination processing of the ZnO/PVA composite nanofibers resulted in a random network of polycrystalline ZnO nanofibers of 50 nm to 100 nm in diameter. The diameter of the nanofibers was found to depend primarily on the solution viscosity; a proper viscosity was maintained by adding PVA to fabricate uniform ZnO nanofibers. Microstructural measurements using scanning electron microscopy revealed that our synthesized ZnO nanofibers after calcination had coarser surface morphology than those before calcination, indicating that the calcination processing was sufficient to remove organic contents. From the gas sensing response measurements for various NO gas concentrations in dry air at several working temperatures, it was found that gas sensors based on electrospun ZnO nanofibers showed quite good responses, exhibiting a maximum sensitivity to NO gas in dry air at an operating temperature of $200^{\circ}C$. In particular, the non-directional electrospun ZnO nanofiber gas sensors were found to have a good NO gas detection limit of sub-ppm levels in dry air. These results illustrate that non-directional electrospun ZnO nanofibers are promising for use in low-cost, high-performance practical NO gas sensors.

Rheological behavior study of Marine Lubricating oil on the amount of MGO (Marine Gas Oil) dilution (해상용 경유의 희석량에 따른 선박용 윤활유의 유변학적 거동연구)

  • Song, In Chul;Lee, Young Ho;Yeo, Young Hwa;Ahn, Su Hyun;Kim, Dae il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.240-245
    • /
    • 2016
  • This paper describes the rheological behavior study such as viscosity and change of shear stress regarding marine lubricating oil according to the amount of Marine Gas Oil (MGO) dilution. The viscosity reduction due to fuel dilution is crucially important characteristic to decreasing engine durability because of the abrasion of piston ring or liner. The lubricating oil used in this paper was blended with magnetic stirrer diluted High Sulfur Diesel (HSD, 0.05 wt%) ratio of 3 %, 6 %, 10 %, 15 % and 20 %. The viscosity and shear stress of diluted lubricating oil were measured with the temperature range from $-10^{\circ}C$ to $80^{\circ}C$ using a rotary viscometer (Brookfield Viscometer). As the amount of MGO dilution increasing in lubricating oil, the viscosity and stress of those decreased, because the lubricating oil diluted MGO with low viscosity show the trends to decreased viscosity and shear stress. Especially, the viscosity and shear stress of lubricating oil radically decreased at low temperature ($0{\sim}-10^{\circ}C$) and doesn't effect in MGO dilution at over $40^{\circ}C$. As temperature risen, the reduction of the viscosity and shear stress in lubricating oil shows the Newtonian behavior. The lubricating oil was required to check up periodically to improve engine durability since the viscosity reduction by MGO dilution accelerating the engine abrasion.