• Title/Summary/Keyword: Gas Transport

Search Result 860, Processing Time 0.028 seconds

Nozzle Effect for the Formation Enhancement of Methane Hydrate (메탄 하이드레이트 생성촉진을 위한 노즐 분사효과 연구)

  • Kim, Nam-Jin;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.8-14
    • /
    • 2008
  • Methane hydrate is crystalline ice-like compounds which consist of methane gas of 99% and over, and the estimated amount of gas contained in hydrates is about 1 trillion carbon Ton. Therefore, they have the potential for being a significant source for natural gas, and 1$m^3$ solid hydrates contain up to 172N$m^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, the tests were performed on the formation of methane hydrate by a nozzle. The result showed that utilizing nozzles dramatically reduces the time in hydrate formation, the pressure after the injection is decreased to be approximately 90% of experimental pressurethe, and gas consumption is higher about 3 times than that of subcooling test.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • Electrical & Electronic Materials
    • /
    • v.15 no.9
    • /
    • pp.10-14
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure flow rate input power density) and a various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimizations.

  • PDF

Facilitated Transport Separation of Carbon Dioxide Using Aminated Polyetherimide Membranes (아민화된 폴리이서이미드 막을 이용한 이산화탄소의 촉진수송분리)

  • Kwon, Se Hwan;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.248-255
    • /
    • 2015
  • Aminated polyetherimide membrane synthesized in the laboratory according to amine ratio was used for measurement of gas permeability, diffusivity, and solubility about carbon dioxide, nitrogen, methane, oxygen, and sulfur dioxide with Time-lag method at room temperature. Generally, gas permeability is totally decreased because the more amination rate reacted to the main chain of amine groups, the more intermolecular space became narrow. However, gas permeability of sulfur dioxide was increased due to combination of sulfur dioxide and amine groups have acid and base properties respectively. Diffusivity and solubility of dry gas are totally decreased excluding sulfur dioxide as increasing amination rate. In case of sulfur dioxide, however, diffusivity as well as solubility was increased as increasing amination rate. Selectivity of carbon dioxide/nitrogen showed 60 when amination rate was 3. In case of humid gas, gas permeability of carbon dioxide was 70 barrer when relative humidity showed 100, and selectivity with nitrogen approximately showed 18.

Comprehensive energy analysis of natural gas transportation in molecules or in electricity

  • Udaeta, Miguel E.M.;Rigolin, Pascoal H.C.;Burani, Geraldo F.;Galvao, Luiz C.R.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.61-72
    • /
    • 2014
  • This paper's aim is to do a global evaluation (considering four dimensions: technical-economic, environmental, social and political) in the ways of natural gas transportation (gas pipelines, GNL and GTL) and electric transmission, in order to supply the energy demands of Mato Grosso do Sul, a brazilian state. The transport ways had been compared between itself using a software of decision taking (Decision Lens Suite), which determined a better way for transporting natural gas in this case. In a generalized manner the gas pipeline is the best way of transporting natural gas, therefore it takes advantage in the majority of the analyzed dimensions.

The Application of Gas-Solid Reactor Model: Consideration of Reduction reaction model (기체 고체 반응기 모형의 응용: 환원로 반응 모형 고찰)

  • Eum, Minje;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.79-82
    • /
    • 2012
  • The gas-solid reactor, such as rotary kiln, sintering bed, incinerator and CFB boiler, is the one of most widely used industrial reactors for contacting gases and solids. the gas-solid reactor are mainly used for drying, calcining and reducing solid materials. In the gas-solid reactor, heat is supplied to the outside of the wall or inside of the reactor. The heat transfer in gas-solid reactor encompasses all the modes of transport mechanisms, that is, conduction, convection and radiation. The chemical reactions occurring in the bed are driven by energy supplied by the heat transfer. This paper deal with the effect of heat transfer and chemical reaction in the gas-solid reactor.

  • PDF

The analysis of dependence on the gas number density in $SF_{6}$-Ar mixtures ($SF_{6}$-Ar혼합가스에서의 압력 의존도 해석)

  • 전병훈;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.248-251
    • /
    • 2002
  • We measured the electron drift velocity, W, in 0.5% $SF_{6}$-Ar mixture over the E/N range from 30 Td to 300 Td and gas pressure range from 0.1 to 8 Torr by the double shutter drift tube with a variable drift distance. This coefficient in the mixture was calculated over the same E/N and gas pressure range by using the two-term approximation of the Boltzmann equation. And the measured and calculated values at different gas number density at each E/N was appreciable dependence in the results on the gas number density,

  • PDF

A Study on the Phase Equilibrium Conditions of Mixture Gas Hydrates using CSMHYD (CSMHYD를 이용한 혼합가스 하이드레이트의 상평형에 대한 연구)

  • Seo, Hyang-Min;Park, Yun-Beom;Chun, Won-Gee;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.585-589
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production, Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% Nacl. The results show that Nacl acts as a inhibitor, but help gases such as ethan, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

  • PDF

A Study on Accident Response Guidelines for Hazardous Materials(HAZMAT) Transport Vehicle (유해화학물질 수송용 차량의 사고 대응 가이드라인에 관한 연구)

  • Seol, Ji Woo;Yong, Jong Won;Chae, Chung-Keun;Tae, Chan Ho;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.87-97
    • /
    • 2015
  • Accidents of HAZMAT transport vehicle are generally dealt by unskilled firefighters. As a result, firefighters became 2nd victims of accidents in some case because of this reason, and it is required to prepare an accident response guidelines against HAZMAT transport vehicle accidents. In this study, risk assessment methods and making methods of guidelines were investigated to make accident response guidelines of HAZMAT transport vehicle accidents. and It identifies hazards and combines with guideword for making guideline items. At last, we determine criteria or detailed methods by referring survey regulations and existed methods.

Effects of Magnetic Fields on the Gaseous Structures in Spiral Galaxies

  • Kim, Yonghwi;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.48.4-49
    • /
    • 2015
  • Stellar spiral arms and magnetic fields in disk galaxies are important in the formation of gaseous structures such as spurs/feathers and wiggles as well as in angular momentum transport between stars and gas. We present our recent results of global magnetohydrodynamic simulations to study nonlinear responses of self-gravitating and magnetized gas to an imposed stellar spiral potential. We vary the arm strength, the arm pattern speed, and magnetic field strength to explore various galactic situations. Magnetic fields not only reduce the peak density of galactic spiral shocks but also make angular momentum transport more efficient via magnetic pressure and tension forces. The extent and shapes of gaseous arms as well as the radial mass drift rate depend rather sensitively on the magnetic field strength. The wiggle instability apparent in unmagnetized models is suppressed with increasing magnetic field strength, while magnetic fields promote the development of magneto-Jeans instability of the arms and magnetic islands in between arms. We quantify the angular momentum transport by spiral shocks, focusing on the effects of magnetic fields. We also present physical interpretations of our numerical results and discuss astronomical implications of our findings.

  • PDF

The Characteristics of Bioremediation for VOCs in Soil Column (VOCs처리를 위한 미생물의 토양복원화 특성)

  • 손종렬;장명배
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.9-12
    • /
    • 2002
  • Diffusive transport of volatile organic compounds(VOCs) and their degradation by bacteria in unsaturated soils are couple by poorly understood mass transfer kinetics at the gas/water interface. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOC remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interaction in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOC transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations form diffusion experiments using toluene as a representative VOC in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas Putida, as the sole active microbial species. The coefficient for gas-liquid mass-transfer, K$\sub$LA/, was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils.

  • PDF