Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.248

Facilitated Transport Separation of Carbon Dioxide Using Aminated Polyetherimide Membranes  

Kwon, Se Hwan (Department of Chemical Engineering, Hannam University)
Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
Publication Information
Membrane Journal / v.25, no.3, 2015 , pp. 248-255 More about this Journal
Abstract
Aminated polyetherimide membrane synthesized in the laboratory according to amine ratio was used for measurement of gas permeability, diffusivity, and solubility about carbon dioxide, nitrogen, methane, oxygen, and sulfur dioxide with Time-lag method at room temperature. Generally, gas permeability is totally decreased because the more amination rate reacted to the main chain of amine groups, the more intermolecular space became narrow. However, gas permeability of sulfur dioxide was increased due to combination of sulfur dioxide and amine groups have acid and base properties respectively. Diffusivity and solubility of dry gas are totally decreased excluding sulfur dioxide as increasing amination rate. In case of sulfur dioxide, however, diffusivity as well as solubility was increased as increasing amination rate. Selectivity of carbon dioxide/nitrogen showed 60 when amination rate was 3. In case of humid gas, gas permeability of carbon dioxide was 70 barrer when relative humidity showed 100, and selectivity with nitrogen approximately showed 18.
Keywords
PEI (Polyetherimide); $CO_2$ (Carbon dioxide); Facilitated transport; Relative humidity; Gas permeability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Huang, X.-M. Zhang, Y.-X. Li, Y.-T. Wu, and X.-B. Hu, "Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate- based ionic liquids", J. Membr. Sci., 471, 227 (2014).   DOI
2 C. Zhang, Z. Wang, Y. Cai, C. Yi, D. Yang, and S. Yuan, "Investigation of gas permeation behavior in facilitated transport membranes: Relationship between gas permeance and partial pressure", Chem. Eng. J., 225, 744 (2013).   DOI
3 H. Matsuyama, M. Teramoto, H. Sakakura, and K. Iwai, "Facilitated transport of CO2 through various ion exchange membranes prepared by plasma graft polymerization", J. Membr. Sci., 117, 251 (1996).   DOI
4 H. Matsuyama, M. Teramoto, and K. Iwai, "Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2", J. Membr. Sci., 93, 237 (1994).   DOI
5 H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, and M. Teramoto, "Facilitated transport of CO2 through polyethylenimine /poly(vinylalcohol) blend membrane", J. Membr. Sci., 163, 221 (1999).   DOI
6 L. Deng, T.-J. Kim, and M.-B. Hagg, "Facilitated transport of CO2 in novel PVAm/PVA blend membrane", J. Membr. Sci., 340, 154 (2009).   DOI
7 R. D. Noble, "Analysis of facilitated transport withh fixed site carrier membranes", J. Membr. Sci., 50, 207 (1990).   DOI
8 R. D. Noble, "Facilitated transport mechanism in fixed site carrier membranes", J. Membr. Sci., 60, 297 (1991).   DOI
9 R. D. Noble, "Analysis of ion transport with fixed site carrier membranes", J. Membr. Sci., 56, 229 (1991).   DOI
10 R. Quinn, D. V. Laciak, and G. P. Pez, "Polyelectrolyte-salt blend membranes for acid gas separations", J. Membr. Sci., 131, 61 (1997).   DOI
11 C. Yi, Z. Wang, M. Li, J. Wang, and S. Wang, "Facilitated transport of CO2 through polyvinylamine/ polyethylene glycol blend membranes", Desalination, 193, 90 (2006).   DOI
12 L.-G. Wu, J.-N. Shen, H.-L. Chen, and C.-J. Gao, "CO2 facilitated transport through an acrylamide and maleic anhydride copolymer membrane", Desalination, 193, 313 (2006).   DOI
13 S. B. Hamouda, Q. T. Nguyen, D. Langevin, and S. Roudesli, "Poly(vinylalcohol)/poly(ethyleneglycol)/ poly(ethyleneimine) blend membranes - structure and CO2 facilitated transport", Comptes Rendus Chimie, 13, 372 (2010).   DOI
14 Y. Zhang, Z. Wang, and S. C. Wang, "Selective permeation of CO2 through new facilitated transport membranes", Desalination, 145, 385 (2002).   DOI
15 G. J. Francisco, A. Chakma, and X. Feng, "Separation of carbon dioxide from nitrogen using diethanolamine- impregnated poly(vinyl alcohol) membranes", Sep. Purif. Technol., 71, 205 (2010).   DOI
16 A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, "Membrane technologies for CO2 separation", J. Membr. Sci., 359, 115 (2010).   DOI
17 J. Zou and W. S. Winston Ho, "CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol)", J. Membr. Sci., 286, 310 (2006).   DOI
18 G. J. Francisco, A. Chakma, and X. Feng, "Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation", J. Membr. Sci., 303, 54 (2007).   DOI
19 S. Shishatskiy, J. R. Pauls, and S. P. Nunes, Klaus-Viktor Peinemann, "Quaternary ammonium membrane materials for CO2 separation", J. Membr. Sci., 359, 44 (2010).   DOI
20 L. Deng and M.-B. Hagg, "Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane", J. Membr. Sci., 363, 295 (2010).   DOI
21 D. J. Kim and S. Y. Nam, "Research and development trends of Polyimide based material for gas separation", J. Membr. Sci., 23, 393 (2013).   DOI
22 X. He and M.-B. Hagg, "Hollow fiber carbon membranes: Investigations for CO2 capture", J. Membr. Sci., 378, 1 (2011).   DOI
23 A. Hussain and M.-B. Hagg, "A feasibility study of CO2 capture from flue gas by a facilitated transport membrane", J. Membr. Sci., 359, 140 (2010).   DOI
24 X. He, J. A. Lie, E. Sheridan, and M.-B. Hagg, "CO2 Capture by hollow fibre carbon membranes: Experiments and process simulations", Energy Procedia, 1, 261 (2009).   DOI
25 M. Sandru, T.-J. Kim, and M.-B. Hagg, "High molecular fixed-site-carrier PVAm membrane for CO2 capture", Desalination, 240, 298 (2009).   DOI
26 D. Grainger and M.-B. Hagg, "Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture", Fuel, 87, 14 (2008).   DOI
27 L. Deng, T.-J. Kim, and M.-B. Hagg, "PVA/PVAm blend FSC membrane for CO2-capture", Desalination, 199, 523 (2006).   DOI
28 D. Y. Oh and S. Y. Nam, "Developmental trend of Polyimide membranes for gas separation", Membr. J., 21, 307 (2011).
29 P. Tremblay, M. M. Savard, J. Vermette, and R. Paquin, "Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus", J. Membr. Sci., 282, 245 (2006).   DOI
30 H. F. M. Mohamed, K. Itoa, Y. Kobayashi, N. Takimoto, Y. Takeoka, and A. Ohira, "Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells", polymer, 49, 3091 (2008).   DOI
31 M. G. Baschetti, M. Minelli, J. Catalano, and G. C. Sarti, "Gas permeation in perflurosulfonated membranes: Influence of temperature and relative humidity", Int. J. Hydrogen Energy, 38, 11973 (2013).   DOI
32 L. Deng, T.-J. Kim, M. Sandru, and M.-B. Hagg, "PVA/PVAm blend FSC membrane for natural gas sweetening", Proc. 1st Annual Gas Processing Symp., Eds. H. Alfadala, G. V. Rex Reklaitis and M. M. El-Halwagi, pp. 247, Doha, Qatar (2009).
33 G. Gebel, "Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution", Polymer, 41, 5829 (2000).   DOI
34 S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their O2/N2 permeation properties", Membr. J., 21, 62 (2011).
35 J. Catalano, T. Myezwa, M. G. De Angelis, M. G. Baschetti, and G. C. Sarti, "The effect of relative humidity on the gas permeability and swelling in PFSI membranes", Hydrogen Energy, 37, 6308 (2012).   DOI
36 J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of gas permeation properties of Polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014).   DOI