• Title/Summary/Keyword: Gas Radiation

Search Result 620, Processing Time 0.025 seconds

Analysis of a gas-particle direct-contact heat exchanger with two-phase radiation effect (복사효과를 고려한 기체-입자 직접접촉식 열교환기 해석)

  • Park, Jae-Hyeon;Baek, Seung-Uk;Gwan, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.542-550
    • /
    • 1998
  • A direct contact heat exchanger using particle-suspended gas as a heat transfer medium is analyzed with an extended emphasis on the radiation, i. e., considering the radiation by both gas and particles. While the Runge-Kutta method is used for a numerical analysis of the momentum and energy equations, the finite volume method is utilized to solve the radiative transfer equation. Present study shows a notable effect by the gas radiation in addition to the particle radiation, especially when changing the chamber length as well as the gas and particle mass flow rate. When the gas and particle mass flow rate is raised, the gas temperature in the particle heater still increases as the gas absorption coefficient increases, which is different from the results for the small scale heat exchanger.

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation (복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석)

  • 임인권;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

Temperature Measurement by Radiation Wavelength of High Temperature CO2 gas (고온 CO2 가스의 복사 파장을 이용한 부분별 온도 측정)

  • Maeng, Saeromg;Yoo, Miyeon;Kim, Saewon;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.315-316
    • /
    • 2014
  • Combustion gases emit various radiation signals by chemical reaction and excited molecules in combustion system. Since temperature measurement of combustion system is very difficult, non-contact temperature measuring methods are being researched. In this paper, we propose optical system of simple structure and implement technique for measuring temperature partially in furnace using radiation wavelength signals of high temperature $CO_2$ gas generated during combustion.

  • PDF

Hot Gas Analysis of Circuit Breakers By Combining Partial Characteristic Method with Net Emission Coefficient

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.115-121
    • /
    • 2003
  • This paper proposes a radiation model, which considers radiation transport as an important component in hot gas analysis. This radiation model is derived from combining the method of partial characteristics (MPC) with net emission coefficient (NEC), and it covers the drawbacks of existing models. Subsequently, using this proposed model, the arc-flow interaction in an arcing chamber can be efficiently computed. The arc is represented as an energy source term composed of ohmic heating and the radiation transport in the energy conservation equation. Ohmic heating term was computed by the electric field analysis within the conducting plasma region. Radiation transport was calculated by the proposed radiation model. Also, in this paper, radiation models were introduced and applied to the gas circuit breaker (GCB) model. Through simulation results, the efficiency of the proposed model was confirmed.

Study on the Measurement of Radiation Energy of the Arc in GCBs (가스차단기내 아크의 복사에너지 측정에 관한 연구)

  • Song, Ki-Dong;Oh, Yeon-Ho;Chong, Jin-Kyo;Cho, Young-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2122-2126
    • /
    • 2007
  • A special PM-Tube(Photo Multiplier Tube) that is using the photoelectric effect has been designed and manufactured to measure the radiation energy of arc in a gas circuit breaker(GCB). The PM-Tube, LLG(liquid light guides), ND(neutral density) filter, and a model gas circuit breaker have been combined for the reception and the transmission of the light and a simplified synthetic test facility with the arc energy measuring system has been established. In the case of $SF_6$ gas pressure $5kg.f/cm^2$ and arc length 20mm, the radiation energy increases with the arc current but it tend to be saturated in the above 20kA. Under the arc current 20kA, the total radiation energy has the biggest value around 8kA and was not exceeded 40% of the total arc energy.

Analysis of the cause of dose delivery errors due to changes in abdominal gas volume during MRgART pancreatic cancer (췌장암 MRgART시 복부가스용적 변화에 의한 선량전달오류 원인 분석)

  • Ha, Min Yong;Son, Sang Jun;Kim, Chan Yong;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.73-83
    • /
    • 2020
  • Purpose: The purpose of this study is to confirm the matching of the electron density between tissue and gas due to variation of abdominal gas volume in MRgART (Magnetic Resonance-guided Adaptive Radiation Therapy) for pancreatic cancer patients, and to confirm the effect on the dose change and treatment time. Materials and Methods: We compared the PTV and OAR doses of the initial plan and the AGC(Abdominal gas correction) plans to one pancreatic cancer patient who treated with MRgART using the ViewRay MRIdian System (Viewray, USA) at this clinic. In the 4fx AGC plans, Beam ON(%) according to the patient's motion error was checked to confirm the effect of abdominal gas volume on treatment time. Results: Comparing the Initial plan with the average value of AGC plan, the dose difference was -7 to 0.1% in OAR and decreased by 0.16% on average, and in PTV, the dose decreased by 4.5% to 5.5% and decreased by 5.1% on average. In Adaptive treatment, as the abdominal gas volume increased, the Beam ON(%) decreased. Conclusion: Abdominal gas volume variation causes dose change due to inaccurate electron density matching between tissue and gas. In addition, if the abdominal gas volume increases, the Beam ON(%) decreases, and the treatment time may increase due to the motion error of the patient. Therefore, in MRgART, it is necessary to check the electron density matching and minimize the variability of the abdominal gas.

A Study on Flame Propagation Through a Mixture of H2/Air and Inert Particles with Radiation Effect (복사효과를 고려한 수소/공기/불활성입자 혼합물에서의 화염전파에 대한 연구)

  • Kim, Deok Yeon;Son, Jin Wook;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1040-1047
    • /
    • 1999
  • The characteristics of flame propagation in inert particle-laden $H_2$/Air premixed gas are numerically investigated on this study. The 2nd order TVD scheme is applied to numerical analysis of governing equations and multi-step chemical reaction model and detailed transport properties are sued to solve chemical reaction terms. Radiation heat transfer is computed by applying the finite volume method to a radiative transfer equation. The burning velocities against the mole fractions of hydrogen agree well with results performed by different workers. The inert particles play significant roles in the flame propagation on account of momentum and heat transfer between gas and particles. Gas temperature, pressure and flame propagation speed are decreased as the loading ratio of particle is increased. Also the products behind flame zone contain lots of water vapor whose absorption coefficient is much larger than that of unburned gas. Thus, the radiation effect of gas and particles must be considered simultaneously for the flame propagation in a mixture of $H_2$/Air and inert particles. As a result, it is founded that because the water vapor emits much radiation and this emitted radiation is released at boundaries as radiant heat loss as well as reabsorbed by gas and particles, flame propagation speed and flame structure are altered with radiation effect.

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation (열복사에 의한 수직연료면의 점화현상 해석)

  • 한조영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.