• Title/Summary/Keyword: Gas Metal Arc

Search Result 305, Processing Time 0.024 seconds

A Study on Effect of Flex Additions for Selecting the Process Parameters in GMA Welding processes (GMA 용접공정에서 공정변수 선정을 위한 플럭스 첨가에 관한 연구)

  • Kim, In-Ju;Kim, Jun-Ki
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • As the quality of a weld joint is strongly influenced by process parameters the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. In this study, prepared by ${\Phi}1.6mm$ GMA welding of metal wire nose Advice jowelui 350A 600A grade level inverter welder and DAIHEN SCR's were carried out using welding. Welding conditions were 5.5m/min wire feed rate the welding current is rapidly transmit approximately 260A, welding voltage was about 30V. CTWD a 22mm, shielding gas was Ar 20L/min and the welding speed was a 240mm/min. Using data collected during welding equipment welding current and welding voltage waveform was analyzed by measuring the volume of the transition mode. Addition of $CaCO_3$ as a loss of the spread of the weld bead dilution rate decreased, suggesting that, GMA in the overlay welding bead shape control, dilution control and may be used as a welding flux is considered. Stabilizing effect of the arc by the Ca-containing $CaF_2$, $CaCO_3$, $CaMg(CO_3)_2$, respectively, welding flux 0.1wt.% added GMA welding and weld overlay were evaluated with dilution, $CaF_2$, and $CaMg(CO_3)_2$ added to the dilution of Seemed to increase.

A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment (염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구)

  • Jong Moon Ha;Deog Nam Shim;Seung Hyun Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

Mechanical Properties and Microstructures in WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.50-56
    • /
    • 2003
  • Metal matrix composites(MMC) consist of metal matrix into which is distributed a second solid phase. The normal intension is to develop a material with superior mechanical properties (for example increased toughness, stiffness and wear resistance) compared to those inherent in the matrix component. In this study, WC-12%Co/low carbon steel MMC overlays have been prepared by Gas Metal Arc Welding(GMAW) according to feeding rate of WC-12%Co grit. The macro and microstructures were examined using optical microscopy (OM) and scanning electron microscopy(SEM) each other. The characteristics of hardness and wear resistance have been investigated. WC-12%Co/low carbon steel MMC overlays which have been taken good beads without porosity and cracks were manufactured by method of GMAW. Matrix of overlayed surface was seen as fish bone and faceted dendrite structures. It was known that structures were iron tungsten carbides, Fe$_{6}$W$_{6}$C which have been occurred by melting of WC-12%Co grits. After MMC had been tested by block-roll wear test it was known that WC-12%Co/low carbon steel MMC has a excellent wear resistance by exiting Fe6w6c and WC-12%Co grit. The consequence was that region of overlay with Fe$_{6}$W$_{6}$C phase has been showed a model of adhesive wear, but region of overlay with WC-12%Co grit was restrained as a result of mechanism that wear of WC-12%Co grit is not adhesive but fracture.racture.

Effect of Short Circuit Time Ratio and Current Control Pattern on Spatter Generation in $CO_2$ Welding ($CO_2$용접의 스패터 발생에 미치는 단락시간비 및 단락전류 파형제어의 영향)

  • 조상명
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.48-53
    • /
    • 2003
  • The object of this study is to examine the effect of short circuit time ratio (SCTR) and current rise delay time (Td) on the spatter generation at low and medium current range in $CO_2$ welding. The spatter was evaluated by the weight generated in the welding of bead-on-plate for 30 seconds (3 times). Td was varied by order of 0, 0.4, 0.8 and 1.2 msec. At each Td, the short circuit time ratio was varied by the output voltage of the welding power source. In the low current range, it was found that the optimum SCTR was 20~25%, and the minimum spatter generation weight was obtained in the case of Td=0.4msec and SCTR=22% even though the remarkable difference was not showed by the application of Td. In the medium current range, it was confirmed that the arc was stable though the SCTR was increased from 20% to 40% by the control of current wave. Spatter generation weight depended on the variation of Td, and the lowest value of spatter generation weight occurred at Td=0.8~1.2msec.

Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding (아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.871-877
    • /
    • 2008
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. Howeve, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis for the prediction of process parameters was used as the research method. And, the results of the prediction method were compared and analyzed.

The Effect of Welding Parameters on the Weld Shape in Pulsed GTA Welding of a STS304L Stainless Steel Capsule (STS304L 캡슐의 펄스형 GTA 용접에서 용접변수들이 용접부 형상에 미치는 영향)

  • Lee, Hyoung-Keun;Han, Hyon-Soo;Son, Kwang-Jae
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.64-71
    • /
    • 2007
  • The aim of this paper is to investigate the effects of welding parameters on the weld shape in seal-welding of STS304L capsule for manufacturing a radioisotope source which is widely used in nondestructive testing of metal structures using gamma ray. Pulsed gas tungsten arc (Pulsed GTA) welding is performed for thin cross sectional area of the capsule. Seven welding parameters including current waveform parameters and arc length etc. are selected as main process parameters using design of experiment. The weld shape such as bead width, penetration depth, weld area, aspect ratio and area rate is investigated to assess the effects of welding parameters. As results, the combination of pulse duty/welding speed largely affects on bead width, penetration depth, area and aspect ratio. Finally, it is concluded that the key parameters are the combination of pulse duty/welding speed, base current and arc length, and their optimal conditions are 50%/1.77mm/s, 6.4A and 1 mm.

Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW (용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석)

  • Arif, Nabeel;Lee, Seung-H.;Kang, Moon-J.;Yoo, Choong-D.
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

Analysis of the Residual Stresses and Fatigue Strenth in Aluminum Alloy Weldments (AI 합금 용접부의 잔류응력 및 피로강도 해석)

  • 차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.177-182
    • /
    • 1996
  • The objective of this thesis is to investigate the influence of welding residual stresses on the fatigue growth behavior of welding residual stresses on the fatigue growth behavior of cracks located transverse to the weld bead. For this purpose, G.T.A. (Gas Tungsten Arc) welding was performed on the Al. Alloy 1100-0 plate and the same initial crack is made on HAZ(Heat Affected Zone), weld metal and base metal respectively. C.T.(Compact Tension) specimens were used as experimental material. Initial welding residual stresses were measured by using strain gage sectioning method. All specimens were tested under constant amplitude load with stress ratio R=0.1

  • PDF

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

Influence of Ni on the Microstructure and Mechanical Properties of HSLA Steel Welds (고강도 저합금강 용접금속의 미세조직과 기계적 특성에 미치는 니켈 함량의 영향)

  • Kang, Yong-Joon;Jang, Ji-Hun;Park, Sang-Min;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.49-54
    • /
    • 2012
  • The microstructure and mechanical properties of the high-strength low-alloy steel weld metals with a variation of nickel content were investigated. The weld metals with a variation of nickel content from 2.3 to 3.3 wt% were prepared using Gas Metal Arc Welding process. The amount of acicular ferrite decreased with increasing nickel content; this is accompanied with an increase in the region of bainite and martensite, hence the hardness and tensile strengths were increased with the increase in nickel content, whereas the impact energy was deteriorated.