• 제목/요약/키워드: Gas Metal Arc

검색결과 305건 처리시간 0.024초

$CO_2$ 용접의 단락이행영역에 있어서 스패터 발생특성 (Characteristics of Spatter Generation in the Short Circuit Transfer Region of $CO_2$ Arc Welding)

  • 안영호;이종봉;최원규
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.630-635
    • /
    • 2001
  • The characteristics of spatter generation in the short circuit transfer region of $CO_2$ welding was investigated. Spatteriing phenomena could be classified into three types : Type I generated due to the abrupt increase of arc voltage in arcing duration. Type II by the gas ejection from molten metal and Type III generated by the arc instability at the moment of arc re-ignition just after short circuiting. Main observed types were dependent on the chemical composition of welding wires. The case of YCW12 wires was mainly composed of spatters generated by Type l and Type II, while most, spatters in YCW11 wires were generated by Type II and Type III.

  • PDF

GMA용접에서 용접전류와 아크 길이의 동특성에 관한 연구 (A Study on Dynamic Characteristics of Welding Current and Arc Length At GMAW)

  • 이태영
    • 한국산업융합학회 논문집
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2011
  • Welding variables and conditions in gas metal arc welding (GMAW) effect on the quality and productivity of the weld, extensive research efforts have been made to analyze the effect of the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the characteristics of the power supply, wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

음향방출법에 의한 SM490A강의 복합용접성 평가 (1) (The Evaluation of Mixed-welded SM 490A Steel by Acoustic Emission (1))

  • 이장규;우창기;박성완;김봉각;윤종희;인승현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.170-173
    • /
    • 2002
  • The object of this study is to investigate the effect of compounded welding through the AE (Acoustic Emission) characteristics on static tensile test. This study was carried out a SM 490A, high tension steel using the low hydrogen type E4316 of electronic shield metal arc welding and compound wire of $CO_2$gas arc welding. $CO_2$welding, weak in the intensity of HAZ (Heat Affected Zone), can be improved by being combined with coated arc welding, Coated arc welding, weak in the intensity of the bead, can be improved by being combined with $CO_2$welding. Especially, electronic coated arc welding and $CO_2$welding complement the mechanical intensity of HAZ and the bead with each other. So, compounded welding increases the intensity in the special parts and enhances the quality of goods.

  • PDF

Microstructure and Tensile Properties of SS400 Carbon Steel and SUS430 Stainless Steel Butt Joint by Gas Metal Arc Welding

  • Poonnayom, Pramote;Chantasri, Sakchai;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The application of SS400 carbon steel and AISI430 ferritic stainless steel joint has been increased in industries because of the advantage of both metals was able to increase the service lifetime of the important structures. Therefore, a fusion welding process that could produce a sound weld and good joint properties should be optimized. This research is aimed to weld a butt joint of SS400 carbon steel and AISI430 ferritic stainless steel using Gas Metal Arc Welding (GMAW) welding process and to study the effects of welding parameters on joint properties. The experimental results were concluded as follows. The optimized welding parameter that produced the tensile strength of 448 MPa was the welding current of 110A, the welding speed of 400 mm/min and the mixed gas of $80%Ar+20%CO_2$. Increase of the welding current affected to increase and decrease the tensile strength of the joint, respectively. Lower welding current produced the incomplete bonding of the metals and indicated the low tensile strength. Microstructure investigation of the welded joint showed a columnar grain in the weld metal and a coarse grain in the heat affected zone (HAZ). The unknown hard precipitated phases were also found at the grain boundaries of the weld metal and HAZ. The hardness profile did not show the difference of the hardness on the joint that was welded by various welding currents but the hardness of the weld metal was higher than that of the other location.

스테인레스강의 GTAW 기법에서 보호가스가 용접성에 미치는 영향 (Effect of weldability in shielding gases on the GTAW process of austenitic stainless steel)

  • 김대주;백호성;류승협;고성훈;김경주;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.63-65
    • /
    • 2006
  • The paper deals with the effect of hydrogen or helium in argon as a shielding gas on GTA welding of austenitic stainless steel. The studies were carried out in GTA(Gas Tungsten Arc) welding with a non-consumable electrode in case with different volume additions of hydrogen or helium to the argon shielding gas, i.e $5%H_2,\;10%H_2$, 30%He and 67%He. The penetration, welding voltage, microstructure and mechanical property were examined. The deepest penetration was obtained from the sample which was welded under shielding gas of $10%H_2$. The studies showed that hydrogen or helium addition to argon changes the static characteristic of the welding arc. The hydrogen or helium addition to argon increases arc power and the quantity of the material melted. The weld metal penetration depth and its width increased with increasing hydrogen or helium content. Additionally, welding voltage increased with increasing hydrogen or helium content.

  • PDF

필렛용접에서의 결함발생 원인 분석 및 저감 방안 (An Analysis of the Cause of Porosity Generation and Reduction Plan in Fillet Welding)

  • 최기영;김영필;김경주;김대순;배상득
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.128-133
    • /
    • 2006
  • Generally, porosity which was formed by pyrolysis of the primer is usually generated in the weld metal in respect of increase of the welding speed. in order to analyze the cause of porosity generation, this study was performed using FCAW(flux cored arc welding) process for three kinds of inorganic.zinc primer. in addition the evaluation by influence of welding method on porosity generation is conducted to compare between FCAW and MAG(metal active gas) welding with the same inorganic zinc primer. As the result of this investigation, not only primer of lower organic binder and zinc but also FCAW process than MAG in fillet welding have been verified the excellent resistance to the porosity generation for horizontal fillet welding.

  • PDF

Alloy 617 모재와 용접부재의 저사이클피로 거동에 관한 실험적 고찰 (An Experimental Investigation on Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints)

  • 최필호;김선진;김우곤;김민환
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.115-121
    • /
    • 2014
  • Alloy 617 is the one of the leading candidate materials for intermediate heat exchangers(IHX) of a very high temperature reactor(VHTR) system. Some of the components are joined by many welding techniques and therefore the welded joints are inevitable in the construction of systems. In the present paper, the low cycle fatigue(LCF) behaviors of Alloy 617 base metal(BM) and the gas tungsten arc welded (GTAWed) weld joints(WJ) are investigated experimentally under strain controlled LCF tests. Fully axial total-strain controlled tests have been conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The weld joints have shown a lower fatigue lives compared with base metals at all the testing conditions. The weld joints have shown a higher cyclic stress response behavior than base metal. Both BM and WJ exhibited cyclic strain hardening behavior, depending on the total strain range. In addition, the strain-life parameters for BM and WJ were determined, based on Coffin-Manson equations.

대전류 고속 TIG 용접 특성에 미치는 He 혼합비의 영향 (Effect of Be Mixing Ratio on the Characteristics of TIG Welding with High Current and High Speed)

  • 오동수;김영식;조상명
    • Journal of Welding and Joining
    • /
    • 제23권3호
    • /
    • pp.54-60
    • /
    • 2005
  • Tungsten Inert Gas(TIG) welding is today one of the most popular arc welding process because of its high quality welds and low equipment costs. Even if welding productivity increases with welding speed and current, this strategy is limited by the appearance of defects such as undercut and humping bead due to the depressed molten metal. The purpose of this study investigates the effect of He mixing ratio on the characteristics with high current and speed in TIG welding. The conclusions obtained permit to explain the arc start characteristics quantitatively and the maximum welding speed on stable bead formation with He mixing ratio for high current and speed TIG welding observed in experiments. Also through the relation of the maximum arc pressure and surface depression depth at high current and speed TIG welding, it made clear the mechanism of unstable bead formation.

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

플럭스 코어드 아크 용접 중 발생하는 총 크롬 및 6가 크롬의 함량 변화 (Content Variation of Total Chromium and Hexavalent Chromium in Flux Cored Arc Welding)

  • 윤충식;백남원;김정한;박동욱;하권철;최상준;김신범;채현병
    • 한국산업보건학회지
    • /
    • 제10권1호
    • /
    • pp.32-44
    • /
    • 2000
  • The practice of welding stainless steel is known to produce various valance states of chromium. $CO_2$ flux cored arc welding on stainless was performed in fume collection chamber. Content of total chromium and hexavalent chromium in fumes, content of hexavalent chromium in total chromium, solubility of hexavalent chromium were investigated. Content of total chromium in fumes increases from 2~3% to 7~9% as a function of input energy, but hexavalent chromium, less than 1.2% in fumes, is not related to input energy. Hexavalent chromium in fumes exists as solubles up to 90%. Content of total chromium in flux cored arc welding fumes and solubility of hexavalent chromium are similar to shielded metal arc welding fumes, but content of hexavalent chromium is similar to metal inert gas welding fumes. These characteristics are relevant to flux of wires and $CO_2$ shielding gas.

  • PDF