• 제목/요약/키워드: Gas Layer Reduction

검색결과 123건 처리시간 0.021초

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong;Kim, Hyung Tae;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Woo, Ju Young;Han, Haksoo
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.112-119
    • /
    • 2022
  • Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감 (Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation)

  • 김종오;정종태
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.66-74
    • /
    • 2004
  • 합성 하수 및 실제 하수를 이용한 금속 막의 정밀 여과 공정에서 분리 막의 전체 저항의 증가는 입자의 막 표면 축적에 의한 케이크 층의 저항 ($R_c$)에 가장 큰 영향을 받았다. 막 오염 저감을 위한 방법으로 오존 가스를 이용한 간헐적 역세정은 공기에 의한 경우보다 막 오염 저감에 훨씬 더 효과적인 것으로 나타났다. 운전 인자에 대한 영향으로 동일한 오존 주입량에서는 주입시간을 길게 하기보다는 주입 가스 유량을 크게 할수록 더 높은 막 투과 유속의 회복을 보였다. 여과시간이 길수록 오존가스를 이용한 막 오염 저감효과가 감소하는 것으로 나타나 부착층 및 막 내부에서 파울링 물질에 의한 비가역적인 막 오염이 발생하기 전에 막 세정을 실시하는 것이 바람직한 것으로 판단된다.

고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구 (A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells)

  • 김현호;지광선;배수현;이경동;김성탁;박효민;이헌민;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).

Estimation of Gas-particle partitioning Coefficients (Kp) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang - Mai, Bangkok and hat-Yai, Thailand

  • Pongpiachan, Siwatt;Ho, Kin Fai;Cao, Junji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2461-2476
    • /
    • 2013
  • To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days st three different atmospheric layer at the heart of chiang-Mai, bangkok and hat-Yai from December 2006 to February 2007. A DRI model 2001 Themal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon(OC) and elemental carbon content in $PM_{10}$. Diurnal and vertical variability was also carefully investigated. In general, OC and EC contenttration shoeed the highest values at the monitoring period o 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis nighttime. Morning peaks of carboaceous compounds were observed during the sampling period of 06:00 -09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime partculate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifrtime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approsimately ten time shigher then those air sample collected at prince of songkla University Hat-Yai campus corpse incinerator and fish-can maufacturing factory but only slightly higher than those of rice straw burnig in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in $PM_{10}$, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-partcle partitiining of PAHs in Chiang-Mai, Bangkok and hat-Yai.

고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석 (Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell)

  • 김동희;정현승;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.283-291
    • /
    • 2023
  • The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

대기오염관리의 새로운 접근방법 (New Approach to Air Quality Management)

  • 윤명조
    • 환경위생공학
    • /
    • 제8권2호
    • /
    • pp.25-48
    • /
    • 1993
  • International concern over the environmental pollution is ever increasing, and diversified countermeasures must be devised in Korea also. Global trend, damages, problems and countermeasures with respect to issues mentioned in the Rio Declaration, such as prevention of ozone layer destruction, reduction of migratory atmospheric pollution between neighboring countries, and prevention of global greenhouse effect, were discussed in this report. Conclusion of the report is summarized as follows : A. Measurement, Planning and Monitoring (1) Development and implementation of a global network for measurement and monitoring from the global aspects such factors as related to acid rain(Pioneer substances, pH, sulfate, nitrate), effect of global temperature(Air temperature, $CO_2$, $CH_4$, CFC, $N_2O$) and destruction of ozone layer($CFC_S$). (2) Establishment of network system via satellite monitoring movement of regional air mass, damage on the ozone layer and ground temperature distribution. B. Elucidation of Present State (1) Improvement and development of devices for carbon circulation capable of accurately forecasting input and output of carbon. (2) Developmental research on chemical reactions of greenhouse gas in the air. (3) Improvement and development of global circulation model(GCM) C. Impact Assessment Impact assessment on ecosystem, human body, agriculture, floodgate, land use, coastal ecology, industries, etc. D. Preventive Measures and Technology Development (1) Development and consumption of new energy (2) Development of new technology for removal of pioneer substances (3) Development of substitute matter for $CFC_S$ (4) Improvement of agriculture and forestry means to prevent the destruction of ozone layer and the greenhouse effect of the globe (5) Improvement of housing to prevent the destruction of ozone layer and the greenhouse effect of the globe (6) Development of new technology for probing underground water (7) Preservation of forest (8) Biomass 5. Policy Development (1) Development of strategy model (2) Development of long term forecast model (3) Development of penalty charge effect and expense evaluation methods (4) Feasibility study on regulations By establishing the above mentioned measures for environmentally sound and sustainable development to establish the right to live for humankind and to preserve the one and only earth.

  • PDF

UV 화염감지기의 감지성능에 대한 분진분위기의 영향 (Influence of Dust Environment on the Detection Capability of Ultraviolet Flame Detector)

  • 김홍;호예
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.113-119
    • /
    • 1997
  • UV 화염감기의 분진분위기에서의 성능저하를 고찰하기 위하여 세제분말, 탄진 및 분말 소화약제의 분진운을 형성하였고 LPG 및 가솔린 화염을 사용하여 UV 화염감지기의 감지성능을 고찰하였다. 분진 분위기 하에서의 UV 화염감지기의 성능을 분진의 농도와 분진층의 거리가 증가함에 따라 뚜렷한 증가를 보였으며, 분진의 화학적, 물리적 특성에 커다란 영향을 받았다. 따라서 UV 화염감지기를 분진 분위기에서 사용한 경우 특별한 주의를 기울일 필요가 있는 것으로 사려된다.

  • PDF

단결정 실리콘 태양전지를 위한 실리콘 질화막의 밴드갭과 결함사이트 (Band Gap and Defect Sites of Silicon Nitride for Crystalline Silicon Solar Cells)

  • 정성욱;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.365-365
    • /
    • 2010
  • In this paper, silicon nitride thin films with different silane and ammonia gas ratios were deposited and characterized for the antireflection and passivation layer of high efficiency single crystalline silicon solar cells. As the flow rate of the ammonia gas increased, the refractive index decreased and the band gap increased. Consequently, the transmittance increased due to the higher band gap and the decrease of the defect states which existed for the 1.68 and 1.80 eV in the SiNx films. The reduction in the carrier lifetime of the SiNx films deposited by using a higher $NH_3/SiH_4$ flow ratio was caused by the increase of the interface traps and the defect states in/on the interface between the SiNx and the silicon wafer. The silicon and nitrogen rich films are not suitable for generating both higher carrier lifetimes and transmittance. These results indicate that the band gap and the defect states of the SiNx films should be carefully controlled in order to obtain the maximum efficiency for c-Si solar cells.

  • PDF

선회도에 따른 평면 화염 버너의 유동특성 (The Effect of Swirl Number on the Flow Characteristics of Flat Flame Burner)

  • 장영준;정용기;전충환
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.997-1004
    • /
    • 2001
  • Burner of Flat Flame type expects the uniform flame distribution and NOx reduction. The characteristics of Flat Flame Burner become different according to swirl number in the burner throat. Experiments were focused on swirl effect by four types of swirler with different swirl numbers (0, 0.26, 0.6 and 1.24). It shows many different flow patterns according to swirl number using PIV(Particle Image Velocimetry) method. The flow of burner with swirler is recirculated by pressure difference between its center and outside. Recirculated air makes stable in flame, and reduced pollutant gas. In case of swirl number 0, main flow passes through axial direction. As swirl number increased, The backward flow develops in the center part of burner and Flow gas recirculates. This is caused by radial flow momentum becomes larger than axial flow by swirled air and the pressure at center drops against surrounding. As swirl number increases, the radial and axial velocity was confirmed to be larger than low swirl numbers. And turbulence intensity have similar pattern. The CTRZ(Central Toroidal Recirculation Zone) is shown evidently when y/D=1 and S=1.24. The boundary-layer between main flow and recirculated flow is shown that the width is seen to be decreased as swirl number increased.

석탄 화력발전소에서 발생되는 석탄회의 수분함유량 및 온도에 따른 비저항성 특성 연구 (A Study of Fly Ash Resistivity Characteristics Generated from the Coal Fired Power Plant as a Function of Water Concentration and Temperature)

  • 구재현;이정언;이재근
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.526-532
    • /
    • 2000
  • Recent studies have been directed toward obtaining a better understanding of the application of electrostatic precipitators to collect fly ash particles produced in a coal-fired power plant. Electrical resistivity can be described as the resistance of the collected dust layer to the flow of electrical current and is an important property for the collection efficiency in the electrostatic precipitator. In this paper, fly ash resistivity as a function of temperature up to $450^{\circ}C$ has been experimentally investigated using the resistivity meter consisted of the movable electrode, dust cup, and furnace. Resistivity was found to increase with increased temperature up to $200^{\circ}C$ due to the reduction of water concentration and then gradually decrease with increased temperature due to the activation of electrons. As the resistivity of fly ash in the flue gas temperature of $150^{\circ}C$ was measured >$10^{10}$ ohm cm, the efficiency of fly ash removal in the electrostatic precipitator might be expected to be low due to back-corona phenomenon. Flue gas conditioning in the electrostatic precipitator to reduce the resistivity of fly ash as required.