• 제목/요약/키워드: Gas Flow

검색결과 5,554건 처리시간 0.029초

유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구 (A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature)

  • 김광일;유원열;이충훈
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

고압수소 유량계측용 임계노즐 유동의 수치해석적 연구 (A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement)

  • 이준희;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF

솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용 (Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

Air-Water 모델에서 액상의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Liquid Phase in Air-Water Model)

  • 오율권;서동표;박설현
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.1-5
    • /
    • 2004
  • In the present study, the gas injection system based on air-water model was designed to investigate the flow characteristics of liquid phase. A PIV system was applied to analyze the flow pattern in a ladle which gas stated to rise upward from the bottom. Gas flow is one of most important factors which could feature a flow pattern in a gas injection system. As the gas injected into the liquid, the kinetic energy of bubble transfer to liquid phase and a strong circulation flow develops in the liquid phase. Such a flow in the liquid develops vortex and improve the mixing process. Due to the centrifugal force, circulation flow was well developed near both wall sides and upper region respectively. Increasing gas flow was helpful to remove dead zone but, weak flow zone still exists in spite of the increasement of gas flow rate.

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.

전기집진기 내부 유동 균일도 평가 기준인 ICAC EP-7과 %RMS 간 상관관계 (Relationship between ICAC EP-7 and %RMS, Standards for Gas Flow Uniformity inside Electrostatic Precipitators)

  • 신완호;홍원석;송동근
    • 한국대기환경학회지
    • /
    • 제26권2호
    • /
    • pp.234-240
    • /
    • 2010
  • Gas flow uniformity is an important factor to guarantee particle removal performance of electrostatic precipitators (EP), and the gas flow uniformity is evaluated by a fraction of standard deviation to the mean of gas flow distribution (%RMS) or a technical standard, ICAC EP-7, provided by The Institute of Clean Air Companies. In this study, relationship between the ICAC EP-7 and %RMS in evaluation of gas flow uniformity was investigated in terms of flow velocity. The maximum values of %RMS for gas velocity distribution of normal distribution has been obtained, and the maximum values of %RMS with gas velocity distribution satisfying ICAC EP-7 standards were also evaluated. With gas flow distribution obtained from CFD analysis and physical model test of real EP, %RMS values were calculated and it was tested if those gas flow distribution satisfy the criteria specified in ICAC EP-7. The %RMS values satisfying criteria of ICAC have been appeared to have similar values with %RMS values calculated with normal distribution of gas velocities.

An Analytical Study on the Gas-Solid Two Phase Flows

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구 (A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system)

  • 조현학;장봉재;송주영
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

연료가스 매몰배관용 과류차단밸브와 성능시험 장치 개발 (Excess Flow Valves for Underground Gas Pipeline and their Performance Testing Equipment Development)

  • 이우귀연;주유경;이진한
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.74-81
    • /
    • 2018
  • 도시가스 공급이 어려운 지역에 낮은 가격에 가스를 공급하기 위해 대한민국 정부는 20114년부터 LP가스 배관망사업을 추진하였다. LP가스 배관망은 일반 도시가스 배관망과는 다르게 준저압(25kPa~75kPa)로 운용되고 있다. 이는 도시가스의 운용압력보다 최소 10배에서 최대 40배 높은 압력이므로, 타공사 등에 의한 배관파손 시 대형사고로 이어질 가능성이 높다. 이러한 위험성을 줄이기 위해, 한국가스안전공사 가스안전연구원은 2018년 매몰배관용 과류차단밸브와 이를 시험할 수 있는 성능시험 평가 장치를 개발 완료 하였다. 과류차단밸브는 배관 내 과류가 발생하면 자동적으로 닫히면서 가스공급을 순간적으로 차단한다. 과류차단밸브는 일반적으로 주 배관이 아닌 분기배관 최 전단에 설치되며, 분기배관과 연결된 세대나 시설의 최대 가스사용량에 따라 과류차단밸브가 차단되는 기준점인 Trip Flow가 결정된다. Trip Flow는 과류차단밸브 설치의 핵심 기준이며, 이를 시험하기 위한 성능시험 설비도 필수적으로 요구된다.