• 제목/요약/키워드: Gas Detection Sensor

검색결과 337건 처리시간 0.026초

멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발 (Development of Gas Type Identification Deep-learning Model through Multimodal Method)

  • 안서희;김경영;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.525-534
    • /
    • 2023
  • 가스 누출 감지 시스템은 가스의 폭발성과 독성으로 인한 인명 피해를 최소화할 핵심적인 장치이다. 누출 감지 시스템은 대부분 단일 센서를 활용한 방식으로, 가스 센서나 열화상 카메라를 통한 검출 방식으로 진행되고 있다. 이러한 단일 센서 활용의 가스 누출감지 시스템 성능을 고도화하기 위하여, 본 연구에서는 가스 센서와 열화상 이미지 데이터에 멀티모달형 딥러닝을 적용한 연구를 소개한다. 멀티모달 공인 데이터셋인 MultimodalGasData를 통해 기존 논문과의 성능을 비교하였고, 가스 센서와 열화상 카메라의 단일모달 모델을 기반하여 네 가지 멀티모달 모델을 설계 및 학습하였다. 이를 통해 가스 센서와 열화상 카메라는 각각 1D CNN, GasNet 모델이 96.3%와 96.4%의 가장 높은 성능을 보였다. 앞선 두 단일모달 모델을 기반한 Early Fusion 형식의 멀티모달 모델 성능은 99.3%로 가장 높았으며, 또한 기존 논문의 멀티모달 모델 대비 3.3% 높았다. 본 연구의 높은 신뢰성을 갖춘 가스 누출 감지 시스템을 통해 가스 누출로 인한 추가적인 피해가 최소화되길 기대한다.

LPG 누출 및 가스센서 3D Mapping을 통한 가스유동현상 분석 (Analysis of Gas Flow Behavior with Experiments for LPG releasing and 3D Mapping of Gas Sensor)

  • 김정환;이민경;길성희;이진한;조영도;문종삼
    • 한국가스학회지
    • /
    • 제21권5호
    • /
    • pp.45-55
    • /
    • 2017
  • 대부분의 가연성가스의 누출 및 화재/폭발 등의 실험은 큰 위험성이 있으며 실험을 진행할 수 있는 부지 선정에 큰 어려움이 있어 가급적 전산유동해석(CFD) 등의 간접적 방법을 많이 활용하였다. 그러나 2016년 10일 강원도 영월군에 에너지안전실증연구센터가 개소함에 따라 대규모/고압/초저온 등의 실험 뿐아니라 소규모 가연성 가스의 누출 및 검지 실험이 가능하게 되어 본 실험을 계획하였다. 본 실험에서는 가스센서를 교정하고 가스가 누출될 공간에 배치 후 LP가스를 누출시켜 가스센서에 검지된 값을 Contour map으로 가시화하였다. 또한 동일 조건으로 해석한 전산유동해석 결과값과 비교하여 LEL 25% 값의 실제 누출(28s, 최대 3.7m)의 차이점에 대해 분석하였다.

나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구 (Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2)

  • 한상도;홍대웅;한치환;전일수
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계 (Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity)

  • 윤지영;이준엽;도남곤;정대웅
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.331-336
    • /
    • 2021
  • The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성 (Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties)

  • 김보영;이철순;박준식;이종흔
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서 (Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye)

  • 정승화;조영범;김용신
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

산화물 반도체를 이용한 최신 호기센서 기술 동향 (Recent Developments in Metal Oxide Gas Sensors for Breath Analysis)

  • 윤지욱;이종흔
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

절연물의열화에 의한 변압기유의 가스분석 (Gas detection of transformer oil according to degradation characteristic of insulation material)

  • 황규현;서호준;이석우;이동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.574-574
    • /
    • 2005
  • To found out the degradation characteristic of transformer insulation, insulation material was depisited into transformer oil and heated. Due to the thermal stress which added to insulation, the density of carbon dioxide which included in transformer oil was mesured by using the gas density detection equipment of gas sensor and air circulation method. As a result, it didn't match with the transformer supervision standard. But it was found that as thermal stress increased, the density of carbon dioxide propertionally increased.

  • PDF

Nerve Agents and Their Detection

  • Kim, Young Jun;Huh, Jae Doo
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.217-223
    • /
    • 2014
  • Nerve agents are major chemical warfare agents with the "G series" and "V series" being the most widely known because of their lethal effect. Although not conspicuously used in major wars, the potential detrimental impact on modern society had been revealed from the sarin terror attack on Tokyo subway, which affected thousands of people. In this mini-review, major nerve agents of the "G series" and "V series" have been described along with various types of their detection methods. The physical properties and hydrolysis mechanisms of the major nerve agents are discussed since these are important factors to be considered in choosing detection methods, and specifying the procedures for sample preparations in order to enhance detection precision. Various types of extraction methods, including liquid-phase, solid-phase, gas-phase and solid-phase microextraction (SPME), are described. Recent development in the use of gas sensors for detecting nerve agents is also summarized.

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.