• Title/Summary/Keyword: Gas Detection Sensor

Search Result 327, Processing Time 0.023 seconds

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

Miniaturized Sensor Interface Circuit for Respiration Detection System (호흡 검출 시스템을 위한 초소형 센서 인터페이스 회로)

  • Jo, Sung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1130-1133
    • /
    • 2021
  • In this paper, a miniaturized sensor interface circuit for the respiration detection system is proposed. Respiratory diagnosis is one of the main ways to predict various diseases. The proposed system consists of respiration detection sensor, temperature sensor, and interface circuits. Electrochemical type gas sensor using solid electrolytes is adopted for respiration detection. Proposed system performs sensing, amplification, analog-to-digital conversion, digital signal processing, and i2c communication. And also proposed system has a small form factor and low-cost characteristics through optimization and miniaturization of the circuit structure. Moreover, technique for sensor degradation compensation is introduced to obtain high accuracy. The size of proposed system is about 1.36 cm2.

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo;Liu, Kun;Jing, Wencai;Peng, Gang-Ding
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

Design and Fabrication of a Micro Gas Sensor Using Nano Sensing Materials on Multi-layer Type Micro Platform with Low Power Consumption (마이크로 플랫폼 상에 나노 감지 재료를 이용한 저전력 NOX 센서의 설계 및 제조)

  • Park, Sang-Il;Park, Joon-Shik;Lee, Min-Ho;Park, Kwang-Bum;Kim, Seong-Dong;Park, Hyo-Derk;Lee, In-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • A novel multi-layer type micro gas sensor for $NO_X$ detection was designed and fabricated. Micro platform defined as type II-1 in this article for micro gas sensor was fabricated using the MEMS technology to meet the demanding needs of lower power consumption. Nano composite materials were fabricated with nanosized tin oxide powder and $\underline{m}$ulti-$\underline{w}$all $\underline{c}$arbon $\underline{n}$ano $\underline{t}$ube (MWCNT) to improve sensitivity. We investigated characteristics of fabricated multi-layer type micro gas sensor with $NO_2$ concentration variations at constant 2.2 V. Sensitivity (S) of micro gas sensor were observed to increase from 2.9, to 7.4 and 11.2 as concentrations of $NO_2$ gases increased from 2.4 ppm, to 3.6 ppm and 4.9 ppm. When 2.4 ppm of $NO_2$ gas was applied, response time and recovery time of micro gas sensor were recorded as 101 seconds and 142 seconds, respectively.

  • PDF

Sensing characteristics of polyaniline sensor coated with porous PVDF layers to methanol gas under various humidity conditions (다공성 PVDF막이 코팅된 Polyaniline 센서의 다양한 습도분위기의 메탄올 가스에 대한 감응특성)

  • Lim, Cheol-Beom;Sohn, Sung-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2006
  • Hydrophobic polymer [ex. Poly(vinylidenfluoride)] layer was coated on polyaniline (PANi) sensor to reduce the contamination humidity. The differences in sensitivity to methanol gas detection in various humidity condition between pure-PANi sensor and sensor coated with poly(vinylidenfluoride) polymer (PVDF) (coated-PANi sensor) were investigated. Considering the relation between the density of pore, which was coated on the layer of the PANi sensor, and sensitivity was investigated. To fabricate the porous PVDF layer on PANi sensor, poly(vinylalcohol) (PVA), which is water-soluble polymer, was used. Coated-PANi sensor was less affected by humidity compared with pure-PANi sensor. And higher density of pore on PVDF layer led to higher sensitivity.

Thermal Flux Analysis for the Wearable NOx Gas Sensors (웨어러블 NOx 가스센서의 열유동 해석)

  • Jang, Kyung-uk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.793-799
    • /
    • 2019
  • In this study, the diffusion process and the thermal energy distribution gradient of the sensor were confirmed by using the finite element analysis program (COMSOL) of the mesh method to analyze the thermal diffusion in the wearable fabric (Nylon) + MWCNT gas sensor. To analyze the diffusion process of thermal energy, the structure of the gas sensor was modeled in a two dimension plane. The proposed modeling was presented with the characteristic value for the component of the sensor, and the gas sensor designed using the mesh finite element method (FEM) was proposed and analyzed by suggesting the one-way partial differential equation in the governing equation to know the degree of thermal energy diffusion and the thermal energy gradient. In addition, the temperature gradient 10[K/mm] of the anode-cathode electrode layer and the gas detection unit was investigated by suggesting the heat velocity transfer equation.

Fabrication and Characteristics of High-performance Doped-$SnO_2$ Thin Films for Explosive Gas Sensor

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 1996
  • Long term stability, sensitization in air, and gas sensing behaviors of tin oxide films were investigated with doping of antimony and palladium. The tin oxide films were prepared on a Corning glass by reactive rf sputtering method and tested for detection of hydrogen gas. Sb-doping improved a long-term stability in the base resistance of $SnO_2$ film sensor. A small amount of Pd doping caused the optimum sensor operating temperature to reduce and also enhanced the gas sensitivity, compared with the undoped $SnO_2$ film. Gas sensitivity depended largely on the film thickness. The important sensitization reactions for sensor operating were $(O_{2ads})+e^-\;{\rightarrow}\;2(O_{ads})^-$ on the surface of $SnO_2$ film at elevated temperature in air and a followed reaction of hydrogen atoms with $(O_{ads})^-$ ions.

  • PDF

A Study on the Implementation of A Fire Detection Monitoring System to Improve Data-Rate in WSN Environment (WSN 환경에서 전송률 향상을 고려한 화재감지 모니터링 시스템 구축에 관한 연구)

  • Lee, Jae-Soo;Yun, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.96-102
    • /
    • 2011
  • There are many problems with the fire detection devices being used in currently, because it is difficult to find location of the source of fire and determine where devices are working or not. In this paper, we proposed fire detection and rescue system using wireless sensor network that can be real-time monitoring and determine safe exit. Fire detection and rescue system based on ubiquitous sensor network can know exactly source of fire and help determine rescue tactics using sensing data from wireless sensor nodes. Transmitted wirelessly in real-time thermal sensor and gas sensor information to analyze the GUI to monitor the status information output to the screen by use of a system implemented in everyday life, looked at the possibility.

Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors (웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

Composite Gas Measurement System using NDIR Method (NDIR 방법을 이용한 복합 가스 측정 시스템)

  • Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.624-629
    • /
    • 2018
  • The current study was conducted to develop a portable composite gas detector allowing the detection of both $CO_2$ and $CH_4$ gases by means of the Non Dispersive Infra-Red (NDIR) method. The gas detector is configured to radiate infrared waves using infrared lamps, where the wavelength of the infrared light is reduced due to absorption throughout the chamber, and this reduction (absorption) is detected by the absorption detector, before being converted and amplified to a 3.5V~6V electrical signal, providing as accurate a measurement as possible. The conventional singe sensor method measures the relative measurement by absorbing only specified wavelengths of infrared radiation, which in the case of gas detection leads to problems with accuracy due to the lack of a reference sensor when detecting light with a wavelength of only $4.26{\mu}m$. The dual sensor employed in this study provides a comparative measurement between the reference value derived from the wavelength of $3.91{\mu}m$, which is not influenced by other gas sources, and the measurement value derived from the wavelength of $4.26{\mu}m$, in order to reduce the errors and enhance the reliability, thereby allowing low power consumption for portable devices and multi-gas detection for both $CO_2$ and $CH_4$ gases. The portable composite gas detector developed herein provides a measurement rage of 0ppm~5,000ppm for $CO_2$ gas, and 0.5%vol for $CH_4$, which allows the determination of whether the $CO_2$ and $CH_4$ contents in indoor air are less than 1,000ppm or not. The current study established that the composite gas detector can be interlinked with firefighting appliances through portable devices or home automation, and is anticipated to be very effective in fire prevention.