• 제목/요약/키워드: Gas Cooling

검색결과 1,091건 처리시간 0.025초

스크린메쉬형 VCHP에서 NCG량에 따른 열전달 성능실험 (Influence of NCG Charged Mass on the Thermal Performance of VCHP with Screen Mesh Wick)

  • 박영식;정경택;서정세
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.689-695
    • /
    • 2008
  • Experimental study has been performed to investigate the influence of non-condensible gas(NCG) charged mass on the thermal performance of a variable conductance heat pipe(VCHP) with screen mesh wick. The VCHP is furnished by screen mesh number 200 for the pipe outer diameter of 12.7mm and the pipe length of 500 mm. The VCHP is filled with water as working fluid of 4.8g and nitrogen as NCG and has evaporator, condenser and adiabatic section, respectively. For the results from experiment, it is found that, for the same charged mass of working fluid, the overall wall temperatures of heat pipe grows up with increasing NCG charged mass. The variation of operating temperature of VCHP reduces with increasing NCG mass. In addition, the profile of axial wall temperature distribution is presented for heat transport capacity of heat pipe, the temperature of cooling water of condenser, inclination angle, and operating temperature.

전기구동 히트펌프(EHP)와 가스엔진구동 히트펌프(GHP)의 에너지소비량 및 환경부하 분석 (Analysis of Energy Consumption & Environmental Load of Electric Heat Pump and Gas Engine Driven Heat Pump)

  • 김상훈;임상채;정광섭;김영일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.933-937
    • /
    • 2006
  • Energy is motive power that makes convenient society. But, our country's energy is depending on most import. Also, energy and environmental issue are important problem in community of nations. The purpose of this study is to analysis the energy consumption and environmental load of EHP and GHP in Medium and small-scaled office building. The annual energy consumption used to cooling and heating by EHP was 10 percent more than GHP. And annual energy cost of EHP was 33 percent more expensive than GHP. But, Compared to the annual $CO_2$ emission, EHP was 6 percent less than GHP. Therefore, equipment selection should be consider environmental load as well as energy consumption and cost.

  • PDF

R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화 (Exergy Analysis and Optimization of Chiller System in Hydrogen Fueling Station Using R290 Refrigerant)

  • 현수빈;최정호
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.356-364
    • /
    • 2021
  • During the hydrogen fueling process, hydrogen temperature inside the compressed tank were limited below 85℃ due to the allowable pressure of tank material. The chiller system to cool compressed hydrogen used R407C, greenhouse gas with a high global warming potential (GWP), as a refrigerant. To reduce greehouse gas emission, it should be replaced by refrigerant with a low GWP. This study proposes a chiller system for fueling hydrogen with R290, consisted in propane, by applying the C3 pre-cooled system use d in the LNG liquefaction process. The proposed system consisted of hydrogen compression and cooling sections and optimized the operating pressure through exergy analysis. It was also compared to the exergy efficiency with the existing system at the optimal operating pressure. The result showed that the optimal operating pressure is 700 kPa in 2-stage, 840 kPa/490 kPa in 3-stage, and the exergy efficiency increased by 17%.

250kW급 폐열회수 시스템 공정설계에 관한 연구 (A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery)

  • 김경수;방세경;서인호;이상윤;정은익;이중섭
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.

액화수소 수송용 진공자켓 밸브의 진공도에 따른 열적특성에 대한 연구 (A Study on the Thermal Characteristics of the Vacuum Jacket Valve for Transporting Liquefied Hydrogen According to the Degree of Vacuum)

  • 오승준;전경숙;윤정환;최정주
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.585-591
    • /
    • 2021
  • Liquefied hydrogen have advantage which reduces the volume by about 800 times or more compared to hydrogen gas, so it is possible to increase the storage density. However, liquefied hydrogen produced by cryogenic cooling of 20 K or less at normal pressure has a problem of maximizing the insulation effect that blocks heat introduced from the outside. Representative insulation technologies include vacuum insulation and multi-layer insulation materials and in general, heat blocking is attempted by combining insulation technologies. Therefore, in this study, the pressure of the internal vacuum layer was changed to 10-1, 10-2, 10-3 and 10-4 Torr to confirm the thermal insulation performance of the vacuum jacket valve for transporting liquefied hydrogen. As a result, it was confirmed that the insulation performance improved as the degree of vacuum increased.

하향류식 커피박 가스화 장치 개발 (Equipment Development for Downdraft Gasification of Coffee Leaves)

  • 조은만;김봉환;김동건;정원훈;이상문;장영희
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.80-85
    • /
    • 2021
  • The gasification of coffee leaves, which are a type of biomass waste, was conducted on a pilot of a downdraft fixed gasification system to investigate the gasification characteristics. The experiment was performed using a coffee leaf pellet size and a batch-type gasification system consisting of a gasifier, cooling cyclone, scrubber, and bag filter. It was found that the air-to-fuel ratio was 2.32 Nm3/kg·h and the reaction temperature was 700 ℃-900 ℃. However, the air flow rate changed to 0.45 Nm3/min, which was lower than the initial starting value depending on the temperature change during the gasification process. It was concluded that coffee leaves can be converted from biomass waste into useful synthetic gas as an alternative energy source.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

브레이크 캘리퍼에 장착한 비산먼지 포집기의 성능 평가 (Evaluation of the Performance of the Scattering Dust Collector Mounted on the Brake Caliper)

  • 김덕호;손병래
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.693-699
    • /
    • 2024
  • The main cause of scattering dust generated by transportation equipment such as automobiles was largely due to exhaust gas from internal combustion engines in the past, but it was generally recognized that non-exhaust causes such as abrasion of the tires or brake pads were low. Accordingly, scattering dust generated by exhaust gas has consistently existed in many studies, such as technological progress and related regulations, but research on non-exhaust is relatively insignificant, and the need for research on scattering dust generated by non-exhaust is emerging. In this study, a dust collector that can be easily mounted on a caliper to collect scattering dust generated by pad wear during the brake operation of an automobile was manufactured. In this study, we developed a dust collector that is easy to mount on calipers to collect scattering dust caused by pad wear during brake operation of automobiles. According to the installation of the manufactured dust collector, the performance of scattering dust by brake operation and the temperature change characteristics of calipers according to the structure of the dust collector were evaluated.

상온 상압의 이산화탄소 저장용 탱크를 위한 예냉과정의 비선형 모델링 및 비례-적분 제어 적용 (Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure)

  • 임유경;이석구;단승규;고민수;이종민
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.574-580
    • /
    • 2014
  • 이산화탄소($CO_2$) 포집 및 지중저장을 위한 $CO_2$ 수송선용 저장탱크는 액체 $CO_2$와 직접적으로 접촉할 경우 발생할 수 있는 물리적/열적 탱크 손상을 방지하기 위해 화물 선적 단계 이전에 예냉과정을 거쳐야 한다. 본 연구에서는 예냉을 위해 주입되는 저온 $CO_2$ 기체의 탱크 유입량을 계산하기 위해 $CO_2$ 저장탱크 예냉과정의 수학적 모델 식을 제안하였다. 또한 비례-적분(proportional-integral: PI) 제어를 통해 공정을 제어하는 동적 모사 결과를 제시하였다. 이 때 제어 변수를 탱크 내 온도 또는 압력으로 선정한 두 가지 사례를 모사하였으며 그러한 결정이 $CO_2$ 저장탱크의 예냉과정에 미치는 영향을 해석하였다. 결과적으로 예냉과정의 PI제어에는 탱크 내 온도를 제어하는 것보다 압력을 제어하는 우회적인 방식을 택할 때 수학적 모델의 비선형성과 특이점 발생으로 인한 불안정성을 피할 수 있으므로 더 안정된 결과가 도출됨을 보였다.

상용부동액 종류에 따른 자동차 배출가스의 실험적 연구 (According to the type of commercial antifreeze experimental study of vehicle emissions)

  • 홍성인
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.4002-4006
    • /
    • 2014
  • 자동차 배출가스는 자동차에 의해 발생되는 일산화탄소, 탄화수소, 납 외에 사람의 건강 또는 생활 환경에 피해를 일으킬 염려가 있는 물질을 말한다. 배출가스를 감소시키기 위해서 다양한 기술을 개발하는 것도 중요하지만 현재 사용되어 지고 있는 요소를 분석하여 최적의 상태를 찾는 것도 중요한 사항이라 여겨진다. 본 연구는 냉각수에 함유되는 부동액이 배출가스에 영향을 미칠 수 있음에 착안하여 현재 국내에서 시판되고 있는 5개 회사제품의 부동액을 권고 수준의 양을 냉각수에 함유시켜 HC, NOx, $CO_2$ 배출량을 측정하고 배출가스에 미치는 영향을 파악하고자 하였다. 또한, 5개회사 부동액 제품에 대하여 냉각팬 구동시간과 NOx 배출량과의 상관관계를 살펴보고자 하였다. 엔진오일의 온도는 자동차 검사 규격에 맞도록 $90{\sim}93^{\circ}C$에 맞추었고, 수동기어를 사용하는 소형승용차의 검사 규격 속도 $40{\pm}2Km/h$에서 수행하였다. 실험결과 D사 부동액이 팬 작동시간이 가장 짧고, $CO_2$, NOx 배출량이 가장 적게 나타났다.