• Title/Summary/Keyword: Gas Cooling

Search Result 1,095, Processing Time 0.022 seconds

A Thermal Analysis of Liquid Rocket Combustors using a Modelling of Film Cooling Performance (막냉각 모형을 이용한 액체로켓엔진 연소기의 열해석)

  • Kim, Hong-Jip;Cho, Won-Kook;Moon, Yoon-Wan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.85-92
    • /
    • 2006
  • A design program has been developed to predict film cooling performance of a liquid rocket engine. A thermal protecting effect of low mixture ratio gas layer has been analysed by CFD. A one-dimensional film cooling model based on the CFD results has been implemented to the previously developed design program of regenerative cooling. Satisfactory agreement has been achieved by comparing the predicted maximum heat flux at the throat of a subscale chamber and the average measured value, and the predicted nozzle average heat flux and the measured value for a full scale chamber with film cooling. It is ascertained that the film cooling is effective to reduce the throat heat flux in rocket engine chamber.

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

Optimal Design using Flow-structure Interaction Analysis Method of Engine Generator Cooling Fan (엔진발전기 냉각팬의 유동-구조 연성해석 기법을 이용한 최적설계)

  • Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2020
  • In this study, the optimization design data was presented by analyzing the performance and durability of the cooling fan by one-way fluid-structure interaction analysis of the cooling fan shape used in the engine generator. For this purpose, a steady-state analysis was performed on the flow field inside the cooling fan, and the durability was analyzed by using the steady-state calculation results as input data for structural analysis. Six types were modeled for fluid analysis by changing the blade and sweep angle of the cooling fan, and the ratio of mass flow rate and torque was best in A type, but B type with relatively large mass flow rate was the best. It was judged to have flow performance. As a result of examining the structural analysis by setting the four blade thickness of the B type selected through the fluid analysis, it was judged that B Type-3 is the most suitable when considering the fatigue safety factor.

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.304-310
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

  • PDF

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

Gas Turbine Core Technology Developments of Korea Aerospace Research Institute (한국항공우주연구원의 가스터빈 엔진 핵심기술 개발현황)

  • Kim, Chun Taek;Yang, Inyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.277-278
    • /
    • 2015
  • Korea Aerospace Research Institute(KARI) has developed the gas turbine core technologies since 1989 and has built the infrastructure for the development of gas turbine. Efficiency and flow instability are the major research object in radial and axial compressors. For combustor, NOx reduction is major research object. KARI also has developed turbine cooling technology as well as turbine aerodynamic technology.

  • PDF

Rapid cooling of injection mold for high-curvature parts using CO2 cooling module (CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System (R744용 초임계 냉동사이클의 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles (자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구)

  • Park, Min-Su;Kim, Sung-Chul;Kim, Dal-Won;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.