• 제목/요약/키워드: Gas Cooler

검색결과 159건 처리시간 0.046초

과냉 회로를 갖는 이산화탄소 냉동시스템에 대한 성능 해석 (Performance Analysis for CO2 System with Sub-cooling loop)

  • 김진만;고성규;김무근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.723-728
    • /
    • 2007
  • In order to evaluate the performance of carbon dioxide cycle with a sub-cooling loop. a simulation system was developed to predict the steady state of $CO_2$ trans-critical cycle. Mathematical models are derived to describe the relationships between the system's coefficient of performance and other operating parameters The mathematical models are based entirely on the basic mass and energy conservation law and thermodynamic and transport properties of carbon dioxide A parametric study has been conducted in order to investigate the effect of sub-cooling loop and various operating conditions on the cycle performance. An optimal mass fraction of a refrigerant flowing through sub-cooling cycle existed for the given evaporating temperature, high pressure and air inlet temperature through gas cooler.

이산화탄소 사이클에서 팽창장치의 영향에 관한 수치적 연구 (Numerical Study for the Effect of Expansion Device on the Performance of the $CO_2$ Cycle)

  • 김무근;김욱중;김유진
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.84-90
    • /
    • 2004
  • In order to evaluate the performance of carbon dioxide cycle, a simulation model was developed to predict the steady state performance of $CO_2$ transcritical cycle. The expansion process is treated as an isenthalpic throttling process or isentropic expansion process. The mathematical model is based entirely on the basic energy conservation law and thermodynamic and transport properties of $CO_2$. A Parametric study has been conducted in order to investigate the effect of isentropic efficiency of expansion turbine and various operating conditions on the cycle performance. An optimal heat rejection pressure existed for the given evaporating temperature and outlet temperature of gas cooler.

석탄가스화공정의 동적모델링 (Dynamic Modeling for the Coal Gasification Process)

  • 유희종;김원배;윤용승
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1997년도 추계학술발표회 논문집
    • /
    • pp.47-53
    • /
    • 1997
  • Dynamic models have been developed for the coal gasification process by using a modular approach method. The complete unit is divided, for the convenience of the analysis, into several sections, viz. the coal feeding system, the gasifier, the gas cooler, the valves, the pumps, etc. The dynamic behaviour of each section is described in mathematical terms and each term is modulized into several submodels consisting of the complete process. To represent the behaviour of the fluid flow, the hydraulic network is proposed. Results for the more important system variables are presented and discussed. There dynamic models enable process and control engineers to quickly review a wide range of alternative operating and control strategies and help operators to easily understand the process dynamics and eventually can be applied to the design of commercial scale IGCC plants.

  • PDF

$CO_2$ 자동차 에어컨 시스템의 최적 고압 설정 알고리즘 개발에 관한 연구 (Development of Optimum High Pressure Algorithm for a Transcritical $CO_2$ Mobile Air-Conditioning System)

  • 이종붕;이준경
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.159-165
    • /
    • 2008
  • This paper deals with the optimum high pressure control algorithm for a transcritical $CO_2$ mobile air-conditioning system with belt-driven compressor to achieve the maximum COP. The experiments were performed to find out the maximum COP conditions with various operating conditions. The experimental results showed that the COP was increased and then decreased with increase of the refrigerant high pressure for the system. Therefore the value of high pressure which has maximum COP could be selected. Furthermore, the strong (linear) relation between the optimum high pressure and the gas cooler outlet temperature was revealed, which suggests the use of a simple controller with only one parameter for the transcritical $CO_2$ cycle.

공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향- (A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation -)

  • 방창훈;추홍록;유갑종
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

천임계 $CO_2$ 시스템용 코일형 내부 열교환기의 열성능 해석 (Thermal Performance Analysis of Circular Coil Type Internal Heat Exchanger for Transcritical $CO_2$ System)

  • 박병규;김근오;김무근
    • 설비공학논문집
    • /
    • 제14권7호
    • /
    • pp.531-542
    • /
    • 2002
  • Transcritical$CO_2$ systems are under consideration for use as residential/mobile air conditioners. In these systems, an internal heat exchanger is usually adopted to improve both capacity and/or COP of the $CO_2$ system in lower operating pressure range of gas cooler. A program has been developed to analyse the performance of internal heat exchangers using the section-by-section method. The internal heat exchanger of coaxial configuration is first analyzed and fairly good agreements with the data are obtained, And then the internal heat exchanger of multiple circular coil configuration has been investigated. The results obtained from the parametric study provide the guidelines for the initial design and manufacturing concepts of the internal heat exchanger in transcritical $CO_2$ system. Further studies are necessary to develop the heat transfer correlations of carbon dioxide in the tubes to obtain more accurate results.

수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구 (Studies on Performance of CO2 Water Heater by Numerical Modeling)

  • 박한빛;윤린
    • 설비공학논문집
    • /
    • 제25권1호
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

산소과급 대형디젤기관에서 고압루트방식 Cooled-EGR적용에 따른 성능 및 배출가스 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Performance and Exhaust Gas Emission with Charging Diesel Engine on Oxygen-enrich and High Pressure Route Cooled-EGR)

  • 김재진;오상기;백두성;한영출
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.37-42
    • /
    • 2003
  • This research was carried on an 8100cc turbo-charged heavy duty diesel in the application of a cooled-EGR. Exhaust and intake manifold were modified and an electronically controlled EGR was installed in order to investigate engine performance and exhausted emission characteristics. High pressure route was designed in the compact form on the purpose of practicability in this cooled-EGR system, which constitutes a venturi tube to maintain pressure difference between exhaust manifold and compressor, an EGR cooler, an EGR valve and a solenoid valve.

기술현황분석 - 가스 바이패스(Gas Bypass) 사이클을 적용한 오일쿨러(Oil cooler) 연구

  • 염한길;이승우;박길종
    • 기계와재료
    • /
    • 제22권1호
    • /
    • pp.54-64
    • /
    • 2010
  • 공작기계의 고속화, 다축화, 복잡화에 따른 열변형 오차가 공작기계에서 발생하는 오차의 대부분을 차지하고 있다. 이러한 열변형 오차를 최소화 하기 위해 공작기계의 발열부에 차가운 오일을 공급하여 냉각함으로써, 열변형을 제거하는 장치가 오일쿨러이다. 오일쿨러는 제어 방법에 따라 On-off, 가스 바이패스, 인버터 방식 등이 사용된다. 초정밀 공작기계에는 주로 가스 바이패스 및 인버터 방식이 사용되는데, 인버터 방식의 경우 고가(高價)인 관계로 주로 옵션 형태로 사용된다. 가스 바이패스 방식 오일쿨러는 인버터 방식에 비해 가격이 저렴하고 구조가 간다하며 정밀한 온도제어를 할 수 있지만 부하가 낮은 경우 구조적인 한계로 인해 온도제어 불안정을 발생시킨다. 본 연구에서는 기존 바이패스 방식 오일쿨러에서 나타나는 문제점을 해결하고 보다 정밀한 온도제어를 위해 2개의 전자밸브를 갖는 듀얼 밸브 방식 오일쿨러 시스템을 개발하였다. 개발된 듀얼 밸브 오일쿨러 시스템의 성능검증을 위해 정격운전, DIN 8602 규격, ISO/DIS 230-3 운전모드에서 성능을 비교/분석하였다.

  • PDF

고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 - (Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions -)

  • 주현철;남진무
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.