• 제목/요약/키워드: Gas Chromatography/mass spectrometry

검색결과 978건 처리시간 0.03초

Effects of High Hydrostatic Pressure and pH on the Reduction of Garlic Off-flavor (초고압처리 시간과 pH 변화에 의한 마늘의 이취성분 저감화)

  • Lim, Chae-Lan;Hong, Eun-Jeung;Noh, Bong-Soo;Choi, Won-Seok
    • Korean Journal of Food Science and Technology
    • /
    • 제42권5호
    • /
    • pp.533-540
    • /
    • 2010
  • Effects of pH (1.8-10.2) and time (56 sec-15 min 4 sec) at high hydrostatic pressure (500 MPa) on the reduction of volatile compounds in garlic were studied. Volatile components of garlic were obtained from the headspace, analyzed, and identified by gas chromatography (GC)-mass spectrometry and an electronic nose. Nineteen sulfur compounds were identified as major compounds in garlic, and furan, aldehydes, alcohols, and ketones were also detected. Off-flavor compounds were more effectively reduced under strong acidic conditions. As the residence time at 500 MPa increased from 56 sec to 15 min 4 sec, the total amount of volatile compounds decreased significantly. The total amount of sulfur compounds decreased about 70% compared to those of raw garlic when the garlic was soaked in buffer (pH 6.0) and treated at 500 MPa for 15 min 4 sec. A principal component analysis showed that the off-flavors of garlic were reduced by the operating time of high hydrostatic pressure as well as pH treatment. The correlation coefficient of the results between GC and the electronic nose analysis was 0.9620. Therefore, pH and high hydrostatic pressure treatment could be used as an efficient method for reducing of garlic off-flavor.

Research on Pyrolysis Properties of Waste Plastic Films (폐플라스틱 필름의 열분해특성에 대한 연구)

  • Kim, Young-Min;Lee, Boram;Han, Tae Uk;Kim, Seungdo;Yu, Tae-U;Bang, Byoung Yeol;Kim, Joug-Su;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • 제28권1호
    • /
    • pp.23-28
    • /
    • 2017
  • Pyrolysis characteristics of waste plastic films were investigated by using a thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry. Thermogravimetric analysis results revealed that the pyrolysis of waste plastic films can be divided into two distinct reactions; (1) the decomposition reaction of starch at between 200 and $370^{\circ}C$ and (2) that of other plastic polymers such as PS, PP, PE at between 370 and $510^{\circ}C$. The kinetic analysis results obtained by using the revised Ozawa method indicated that the apparent activation energy of the pyrolysis reaction of waste plastic films was also changed dramatically according to the different decomposition reactions of two major waste plastic film components. Py-GC/MS results also revealed that the typical pyrolyzates of each polymer in waste plastic films were levoglucosan (starch), terephthalic acid (PET), styrene monomer, dimer, and trimer (PS), methylated alkenes (PP), and triplet peaks (PE) composed of alkadiene/alkene/alkane. The phthalate, used as a polymer additive, was also detected on the pyrogram of waste plastic films mixture.

Volatile Compounds and Antiproliferative Effects of Dendropanax morbifera on HepG2 Cells (황칠나무의 휘발성 화합물 분석 및 HepG2 세포의 증식 억제 효과)

  • Yang, Seun-Ah;Garcia, Coralia V.;Lee, Ji-Won
    • Journal of Life Science
    • /
    • 제27권5호
    • /
    • pp.561-566
    • /
    • 2017
  • Dendropanax morbifera Lev. is known in Korea for its golden sap and medicinal properties. The many biological activities of the leaf and stem extracts suggest that this tree could be a valuable source of medicinal compounds for the treatment of various ailments such as dermatitis, migraines, dysmenorrhea, muscle pain, and infectious diseases. However, there is little information on the composition and biological activity of the volatile fraction of D. morbifera. Therefore, in this study, the volatile compounds in leaves, stems, and sap of D. morbifera were isolated using solvent and supercritical fluid extraction (SFE), and analyzed by gas chromatography/mass spectrometry to reveal their chemical composition and identify potential compounds of interest. Fifteen compounds were identified in the leaf extracts, whereas 29 and 3 compounds were identified in the stem and sap extracts, respectively. The volatile profiles obtained using solvent and SFE differed. Esters and aromatic hydrocarbons predominated in the solvent extract of leaves and SFE extract of stems, whereas the solvent extract of stems and SFE extract of leaves contained terpenoids. Limonene, ${\alpha}$-pinene, and ${\beta}$-myrcene were identified in the volatile extract of sap, with limonene representing 96.30% of the total peak area. In addition, the antiproliferative effects of the solvent extracts of leaves and stems were evaluated, revealing that these solvent extracts were particularly effective in decreasing the proliferation of HepG2 cells.

Organic Acids, Free Sugars, and Volatile Flavor Compounds by Type of Jerusalem Artichoke (돼지감자의 품종별 유기산, 유리당 및 휘발성 향기성분)

  • Jung, Bok-Mi;Shin, Tai-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제46권7호
    • /
    • pp.822-832
    • /
    • 2017
  • This study analyzed contents of organic acids, free sugars, and volatile flavor compounds by type of Jerusalem artichoke (Helianthus tuberosus L.). Organic acids in dried Jerusalem artichoke were mainly composed of malic acid, citric acid, and succinic acid. Sucrose, fructose, and glucose were the major sugar components of dried Jerusalem artichoke. Free sugars were more abundant in the white colored sample than in the purple colored sample. In contrast, purple colored sample contained more organic acids than the white colored one. Volatile compounds in Jerusalem artichoke were investigated using the solid-phase micro-extraction method of gas chromatography/mass spectrometry. A total of 117 volatile compounds were identified in Jerusalem artichoke, and chemical classification was as follows: 5 acids, 13 alcohols, 19 aldehydes, 12 hydrocarbons, 15 ketones, 8 miscellaneous, 27 pyrazines, and 18 terpenes in all samples. Terpene was the most abundant in Jerusalem artichoke, and ${\beta}$-bisabolene was the main component in terpenes. The second most common compound was aldehyde, and hexanal was the highest. Pyrazines were the most abundant in the roasted samples, and 2,5-dimethyl-3-ethylpyrazine was present at the highest level, followed by 2,5-dimethylpyrazine. Compared with purple samples, main compounds contained in white samples were aldehydes and hydrocarbons, whereas the major compounds in purple samples were terpenes and alcohols.

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

Determination of the volatile flavor components of orange and grapefruit by simultaneous distillation-extraction (연속수증기증류추출법에 의한 오렌지와 자몽의 휘발성 유기화합물 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • 제23권1호
    • /
    • pp.63-73
    • /
    • 2016
  • The volatile flavor components of the fruit pulp and peel of orange (Citrus sinensis) and grapefruit (Citrus paradisi) were extracted by simultaneous distillation-extraction (SDE) using a solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by gas chromatography-mass spectrometry (GC-MS). The total volatile flavor contents in the pulp and peel of orange were 120.55 and 4,510.81 mg/kg, respectively, while those in the pulp and peel of grapefruit were 195.60 and 4,223.68 mg/kg, respectively. The monoterpene limonene was identified as the major voltile flavor compound in both orange and grapefruit, exhibiting contents of 65.32 and 3,008.10 mg/kg in the pulp and peel of orange, respectively, and 105.00 and 1,870.24 mg/kg in the pulp and peel of grapefruit, respectively. Limonene, sabinene, ${\alpha}$-pinene, ${\beta}$-myrcene, linalool, (Z)-limonene oxide, and (E)-limonene oxide were the main volatile flavor components of both orange and grapefruit. The distinctive component of orange was valencene, while grapefruit contained (E)-caryophyllene and nootkatone. $\delta$-3-Carene, ${\alpha}$-terpinolene, borneol, citronellyl acetate, piperitone, and ${\beta}$-copaene were detected in orange but not in grapefruit. Conversely, grapefruit contained ${\beta}$-pinene, ${\alpha}$-terpinyl acetate, bicyclogermacrene, nootkatol, ${\beta}$-cubebene, and sesquisabinene, while orange did not. Phenylacetaldehyde, camphor, limona ketone and (Z)-caryophyllene were identified in the pulp of both fruits, while ${\alpha}$-thujene, citronellal, citronellol, ${\alpha}$-sinensal, ${\gamma}$-muurolene and germacrene D were detected in the peel of both fresh fruit samples.

Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide (초임계 이산화탄소 처리 공정에 의한 다시마 유래 이취성분 제거)

  • Park, Jung-Nam;Kim, Ryoung-Hee;Woo, Hee-Chul;Chun, Byung-Soo
    • Clean Technology
    • /
    • 제18권2호
    • /
    • pp.191-199
    • /
    • 2012
  • In order to reduce or remove off-flavor and volatile organic compounds (VOCs) from Laminaria japonica effectively, continuous treatment process by supercritical carbon dioxide (SC-$CO_2$) was applied. After freeze-drying, Laminaria japonica powdered with $710{\mu}m$ was used. Experiments were carried out at temperature range from 35 to $55^{\circ}C$, and pressure range from 10 to 25 MPa for evaluation of SC-$CO_2$ treatment effect. Flow rate of carbon dioxide used in this reseach was constantly fixed at 26.81 g/min. Before and after treatment of SC-$CO_2$, off-flavor and VOCs from Laminaria japonica were analyzed by gas chromatography-mass spectrometry detector (GC-MSD). Total 47 VOCs emitted from Laminaria japonica were identified before treatment of SC-$CO_2$, major components of seaweed smell (ordor) in Laminaria japonica were identified as alcohols, aldehydes, ester and acids, ketone, halogenated compounds and hydrocarbon. Off-flavor and VOCs in all experimental conditions was reduced or removed after SC-$CO_2$ treatment. Among the experimental conditions, the highest removal yield was at 25 MPa and $55^{\circ}C$.

Camphor Inhibits Adipocyte Differentiation via Its Impact on SMO-dependent Regulation of Hedgehog Signaling (Camphor의 Hedgehog 신호 SMO 조절을 통한 지방구세포 분화 억제효과)

  • Choi, Jae Young;Lim, Jong Seok;Lee, Ja Bok;Yang, Yung Hun
    • Journal of Life Science
    • /
    • 제30권11호
    • /
    • pp.973-982
    • /
    • 2020
  • In this study, we examined inhibition of adipocyte differentiation associated with the administration of camphor, a substance identified in extracts of the flowering plant Chrysanthemum indicum L. (CI). No camphor-mediated cytotoxicity was observed over a period of 1-10 days in studies targeting cells of the 3T3-L1 adipocyte-like line. Experiments that featured siRNA-mediated suppression of the transmembrane proteins Patched (PTCH) and Smoothened (SMO) resulted in inhibition and activation of differentiation, respectively. Interestingly, inhibition of PTCH typically activates SMO protein targeting and serves to activate hedgehog (HH)-mediated signaling. The results of our study suggest that activation of HH-mediated signaling can inhibit adipocyte differentiation. Furthermore, expression of glioma-associated oncogene homologue 1 (Gli1) was detected by flow cytometry in 62.7±1.5% of cells in response to administration of Lactobacillus rhamnosus (KCTC 3237) and in 60.4±2.2% of cells in response to camphor; these levels are higher than those detected in undifferentiated controls (24.9±3.1%). No change in the state of fermented camphor was identified by gas chromatography-mass spectrometry (GC-MS), but a 15.41% quantitative increase was confirmed in KCTC 3237. Overall, we conclude that administration of camphor resulted in overexpression of SMO and modulated the differential expression of Gli1. Animal studies focused on the impact of camphor as an agent to counteract obesity might be considered in the future. Indeed, camphor and similar physiologically active compounds from fermented CI might be developed as new and effective treatments for obesity.

Identification of Irradiation-induced Volatile Flavor Compounds in Beef (방사선 조사 쇠고기에서의 휘발성 조사물질의 구명)

  • Cha, Yong-Jun;Kim, Hun;Park, Sung-Young;Kim, So-Jung;You, Young-Jae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제29권6호
    • /
    • pp.1042-1049
    • /
    • 2000
  • Irradiation-induced volatile flavor compounds in irradiated (1, 3, 5, 10 kGy) beef were analyzed by liquid liquid continuous extraction (LLCE) and gas chromatography/mass spectrometry (GC/MS) methods. One hundred fifty volatile compounds were detected in irradiated beef. These compounds were composed mainly of 71 hydrocarbons, 35 aromatic compounds, 15 aldehydes, 7 ketones, 4 acids, 6 esters and 12 miscellaneous compounds. Among these, only 6 volatile compounds including (E) -2-hexenal, nonene, 2-nonenal, cyclodecene, dodecene and cyclododecene were detected as irradiation-induced volatile flavor compounds, comparing with unirradiated beef meat. However, 4 volatile compounds, such as cyclodecene (r=0.88), (E)-2-hexenal (r=0.85), nonene (r=0.74) and 2-nonenal (r=0.70), having a positive correlation coefficient with the increment of irradiation dose, were considered as marker compounds for detecting irradiation dosages in irradiated beef.

  • PDF

Formation of Volatile Compounds by the Thermal Degradation of ${\beta}-Carotene$ (${\beta}-Carotene$의 열분해(熱分解)에 의한 휘발성(揮發性) 화합물(化合物)의 생성(生成))

  • Park, Joon-Yung;Kim, Ok-Chan;Kim, Young-Hoi
    • Applied Biological Chemistry
    • /
    • 제29권3호
    • /
    • pp.260-265
    • /
    • 1986
  • Thermal degradation of ${\beta}-carotene$, major carotenoid present in cured tobacco leaves, were carried out at $400,\;600,\;and\;800^{\circ}C$ which are similar to temperatures existing in the combustion zones of cigarettes, and subsequent volatile degradation products were analyzed by combined gas chromatography-mass spectrometry. The volatile compounds identified from degradation products included 36 aromatic hydrocarbons, 10 ${\beta}-ionone-related$ compounds which have trimethylcyclohexane ring, and 7 others. Of these, 37 compounds including ${\beta}-cyclogeraniol$ had not been previously reported in the literature as thermal degradation products of ${\beta}-carotene$. The major compounds of degradation products at $400\;and\;600^{\circ}C$ were ${\beta}-xylene,\;{\alpha}-terpinene,\;{beta}-cyclocitral,\;ionene\;(1,2,3,4-tetrahydro-1,1,6-trimethyl\;naphthalene),\;{\beta}-ionone$, and dihydroactinidiolide. The major compounds at $800^{\circ}C$ were the above six compounds plus toluene.

  • PDF