• Title/Summary/Keyword: Gas Atomization

Search Result 385, Processing Time 0.034 seconds

A Study on the Powder Structure of Rapidly Solidified HSLA Steels. (급냉응고한 HSLA강의 분말조직에 관한 연구)

  • Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.7 no.2
    • /
    • pp.133-139
    • /
    • 1987
  • The evolution of microstructures in two rapidly solidfied niobium microalloyed steels was studied. These alloys were rapidly solidified by two powder process techniques: nitrogen gas atomization and centrifugal atomization. It was found that in both powder processes, powder particles larger than $20{\mu}m$in diameter were martensitic, and that the nitrogen gas atomized particles solidified cellularly while those that were centrifugally atomized tended to solidify dendritically. Particles smaller than $1{\mu}m$ were not completely characterized because of wide variation in composition.

  • PDF

Effect of the Pressure Formation at the Tip of the Melt Delivery Tube in Close-coupled Nozzles in Gas Atomization Process

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.477-478
    • /
    • 2006
  • Close-coupled atomizers are of great interest and controlling their performance parameters is critical for metal powder producing and spray forming industries. In this study, designed close-coupled nozzle systems were used to investigate the effect of the nozzle types and protrusion length of the melt delivery tube on the pressure formation at the melt delivery tube tip. The observed metal flow rate was not behaving as what was earlier assumed, namely that, deeper aspiration enhanced metal flow rate. Higher aspiration pressure at the tip of the melt delivery tube increases the stability of atomization process.

  • PDF

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -)

  • Ryu, Ho-Jin;Lim, Jae-Hyun;Kim, Ji-Soon;Kim, Jin-Chun;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

Flow characteristics of supersonic twin-fluid atomizers (초음속 2유체 분무노즐의 유동 특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2267-2276
    • /
    • 1996
  • Twin-fluid atomization has been widely used in combustors and process industries because of its high performance and simple structure. Flow visualization and pressure measurements were conducted to investigate the effects of gas flow in twin-fluid atomization. Schlieren photographs showed that changes in atomizing gas pressure, altered the wave patterns, and the lengths of both recitrculating toroid (impinging stangnation point) nad supersonic flow region in the jet. A longer supersonic wave pattern like net-shape wqas observed as atomizing gas pressure increased. The disintegration phenomenon of liquid delivery tube. The variation of spray angles with gas pressures were obtained by visualization using laser sheet beam. Suction pressuresat the nozzle orifice exit and recirculating region are shown to be used to estimate the stable atomization condition of a twin-fluid atomizer.

Effects of Propellant Phases on Atmospheric Spray Characteristics of a Pintle Injector for Throttleable Rocket Engines (가변 추력용 핀틀 분사기에서 추진제 상에 따른 상압분무 특성)

  • Yu, Kijeong;Son, Min;Radhakrishnan, Kanmaniraja;Kim, Heuy Dong;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Atmospheric spray characteristics were experimentally compared between liquid-gas and liquid-liquid sprays of a pintle injector. In order to study spray characteristics, water and air were used as the simulants and the visualization technic was adopted. Spray images were acquired by using a backlight method by a high-resolution CMOS camera. As a result, when the pintle opening distance increased, liquid sheets became unstabled and fluttering droplets increased. In the liquid-gas case, the breakup performance increased as the pressure of gas injected from the annular orifice increased. In the liquid-liquid case, atomization efficiency decreased as the pressure of liquid injected from the annular orifice increased. Spray angles presented a similar trend between two cases. At the same momentum ratio, the spray angle of liquid-liquid case was lower than the angle of liquid-gas case.

Atomization Characteristics Experiment of Hole Type Nozzle for the Reduction of Harmful Exhausted Gas (유해배기가스 저감을 위한 Hole형 노즐의 미립화 특성실험)

  • Chung, Jin-Do;Yu, Byoung-Gu
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 1997
  • A simplified experiment was performed to figure out the atomization characteristics of rice-bran oil which it is highly viscous liquid by applying ultrasonic energy. A spray system, an ultrasonic system, and three kinds of hole-type nozzles(hole diameter: 0.31, 0.34, 0.37mm) were manufactured. To investigate the effects of ultrasonic energy on the atomization of a highly viscous liquid, a phase doppler particle analyzer was used for measurement and calculation of spray droplets data. Nozzle opening pressures were chosen of 3 levels, i.e, 16, 20, and 24MPa. As a result, it could be concluded that the ultrasonic energy was effective to improve the spray atomization when it applied to the fuel by means of 3 different nozzles because of the effects of the liquid fuel cavitation and relaxation between molecules caused by ultrasonic energy. The improvement rate of the spray atomization by the ultrasonic method compared with the conventional spray increased about 15% in the case of hole type nozzles. By increasing of the nozzle opening pressure and decreasing of the hole diameter, the atomization of spray droplets was improved.

  • PDF

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis (이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향)

  • Ku, Kun Woo;Chung, Kyung Yul;Yoon, Hyun Jin;Seok, Ji Kwon;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Gas Atomization and Consolidation of Thermoelectric Materials

  • Hong, S.J.;Lee, M.K.;Rhee, C.K.;Chun, B.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.480-481
    • /
    • 2006
  • The n-type $(95%Bi_2Te_3-5%Bi_2Se_3)$ compound was newly fabricated by gas atomization and hot extrusion, which is considered to be a mass production technique of this alloy. The effect of powder size on thermoelectric properties of 0.04% $SbI_3$ doped $95%Bi_2Te_3-5%Bi_2Se_3$ alloy were investigated. Seebeck coefficient $({\alpha})$ and Electrical resistivity $(\rho)$ increased with increasing powder size due to the decrease in carrier concentration by oxygen content. With increasing powder size, the compressive strength of $95%Bi_2Te_3-5%Bi_2Se_3$ alloy was increased due to the relative high density. The compound with ${\sim}300\;{\mu}m$ size shows the highest power factor among the four different powder sizes. The rapidly solidified and hot extruded compound using $200[\sim}300{\mu}m$ powder size shows the highest compressive strength.

  • PDF