• 제목/요약/키워드: Gas Atomization

검색결과 397건 처리시간 0.022초

Co 함량이 다른 분말고속도공구강의 제조 및 기계적 특성 (Fabrication and Mechanical Properties of Powder Metallurgical High Speed Steels with Various Co Contents)

  • 홍성현;배종수;김용진
    • 한국분말재료학회지
    • /
    • 제9권5호
    • /
    • pp.303-306
    • /
    • 2002
  • P/M high speed steels with various Co contents were fabricated by gas atomization and Canning/HIP process. As Co content in P/M high speed steel increased, hardness, transverse rupture strength and yield strength in compressive testing increased due to solid solution hardening of Co in matrix. Especially, PM high speed steels with Co have high deformation resistance to repeated compressive loading.

급속응고 Al-Ni-Mm 합금분말 압출재의 기계적 성질 (Mechanical Properties of Rapidly Solidified Al-Ni-Mm Alloy Powders Consolidated by Extrusion)

  • 김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.100-103
    • /
    • 1998
  • In this study, Al-Ni-Mm alloy has been produced by a gas atomization technique and consolidated by a powder extrusion method. The powders showed mixed structures of amorphous, fcc-Al phases and intermetallics. Each phase shows different size and quantity with different size of the powders due to the higher cooling rate of the finer powders. Because of the difference of the microstructure, the powders with the different size show differences of the mechanical properites of the powders and extrudates.

  • PDF

저열량 바이오매스 합성가스의 혼소특성 (The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil)

  • 윤상준;김용구;전창준;이재구
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.860-865
    • /
    • 2012
  • 바이오매스 합성가스는 저열량 가스이지만 유류를 대체하기 위한 목적으로 공업로, 보일러 등에서 혼소방법으로 이용되고 있다. 혼소버너의 기본구조는 오일버너를 중심부로 하고 저열량 가스 연료를 그 주위로 공급하는 형태로 설계되었다. 본 연구에서는 가스의 균일분산 방법과 가스노즐 각도를 변화시키는 방법을 적용하여 세 종류의 버너를 설계하였다. 연소공기량 증가에 따라 CO 발생량이 감소하였으며, 혼소조건에서 화염으로부터 잔염 발생 원인은 오일버너로부터 미립화 불량인 것으로 나타났다. 혼소조건에서는 가스와 오일연료에 대한 과잉공기 요구량이 서로 다르기 때문에 적절하게 연소공기량을 맞추기가 어려웠지만, 과잉산소 4.7~8.2% 범위에서 안정적인 연소조건 유지가 가능하였다. 본 연구를 통하여 합성가스와 유류의 혼소 이용은 합성가스 성분이 오일보다 연소속도가 빠르게 이루어져 오일버너 미립화를 촉진시켜주고, 오일 단독연소조건보다 CO 배출 농도를 낮게 유지할 수 있음을 알 수 있었다.

사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석 (LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct)

  • 유영린;한두희;성홍계;전혁수;박철현
    • 한국항공우주학회지
    • /
    • 제44권4호
    • /
    • pp.290-297
    • /
    • 2016
  • 사각덕트에서 난류 유동장으로 분사되는 액체 제트의 액주 분열과 미립화 현상에 관한 LES를 수행하였다. 기체상태의 공기 유동 해석에 오일러리안 해법을 사용하고, 액적 추적을 위하여 라그랑지안 해법을 사용하여 기체-액체간 이상유동(two phase flow) 해석을 수행하였다. 액적 분열 모델, 아격자 스케일 모델 및 공간 차분법에 따른 액적 분열을 조사하였다. 액체 제트의 침투깊이를 경험식과 비교하였으며 경험식보다 약간 높음을 알 수 있었다. 제트 후류에서 사우터 평균직경에 대한 분석을 수행하였다.

고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구 (A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas)

  • 이한민;윤재근;홍정구
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

운행차 배출가스 정밀검사 결과를 이용한 가솔린 차량에 대한 배출가스 특성 분석 (Analysis of Emission Gas Characteristics for Gasoline Vehicles using the Inspection Results of Car Emission)

  • 노현구
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.128-135
    • /
    • 2018
  • In this study, the following conclusions could be obtained from the analysis of emissions contribution rates and features for contaminated emissions by 13,456 gasoline vehicles passed in the vehicle load test (ASM-idle) under the inspection year 2013 to 2017. It was confirmed that the contamination of the CO, HC, NOx by the displacement is reduced on over 3L engine. As a result of comparing the exhaust gas in the low speed idle mode and the AS2525 mode, the exhaust gas in the low speed idle mode was measured high. It is estimated that if ISG function is applied, emissions from idle condition will be reduced. NOx emissions were reduced when the engine power was above 200HP. It has been confirmed that the amount of exhaust emissions are significantly reduced for vehicles manufactured after 2004. As a result of analyzing the exhaust gas according to the season, it is judged that there is a correlation between HC and NOx according to the ambient temperature. The concentration of exhaust emission in vehicles with high accumulated distance increases, which is considered to be the result of aging of the vehicle.

가스터빈 연소기내의 선회분무연소 특성 (The Characteristics of Swirl Spray Combustion in Gas Turbine Combustor)

  • 홍정구;김혁주
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2721-2730
    • /
    • 1996
  • The present study conducted experimental study of spray combustion to investigate the effect of the inlet conditions of fuel and air on the flame structure, the flame stability and the characteristics of emission in the can-type model of a gas turbine combustor. In the experiment, the diameter of fuel droplet was measured using Malvern particle size analyser and temperatures in the combustion chamber were measured with R-type shielded thermocouple. In addition, flame structure was taken picture with camera and analysed. Gas analyser was also used to analyse the concentration of each components of exhausting gas. The experimental results showed that the flame condition was optimal with swirl number, 0.63 and equivalence ratio, 0.5 for controlling the flame stability, the combustion temperature and the NOx concentration. The present study concluded that both the flame structure and the emission formation were strongly affected by the swirl intensity, which selection was found as an important parameter for either stabilizing flame or lowering the quantity of NOx.

Spray Characterization of Gas-Centered Swirl Coaxial Injectors Using an Optical Probe

  • ;홍문근;;;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.172-177
    • /
    • 2011
  • In order to investigate spray characteristics of gas-centered swirl coaxial injectors, a phase detection optical probe is employed to obtain the spatial evolution of the drop size and velocity. From the study on the optical probe responses under various impact angles, it is demonstrated that the drop size and velocity can be measured with an uncertainty less than 15% when the probe axis remains within about ${\pm}15^{\circ}$ of the drop velocity direction. This typical uncertainty is in good agreement with a previous study. It is also shown that the drop sizes measured by the optical probe are in accord with those evaluated by image processing techniques. Finally, the experiments with the optical probe are performed in dense sprays, as it were, in the near field of gas-centered swirl coaxial injectors. Some experimental results are presented and discussed to be of help to understanding of spray characteristics of the injectors.

  • PDF

가변추력을 위한 기체주입식 와류형 분사기의 분무특성 (Spray Characteristics of Effervescent Swirl Injectors for Variable Thrust)

  • 이원구;황동현;안규복;윤영빈
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.1-12
    • /
    • 2019
  • 액체로켓엔진에서의 추력조절을 위해 기체주입식 가변추력 방법에 대한 기초적인 연구를 수행하였다. 기체주입식 가변추력은 간단한 구조로 추력을 조절할 수 있을 뿐만 아니라 밀도 감소에 비례하여 증가된 분사차압에 의해 미립화 성능 증가라는 장점을 갖는다. 본 연구에서는 기체주입식 와류형 분사기를 이용하여 액체 질량유량과 기체주입량의 변화에 따른 분무 불안정, 분무형상, 분무각, 분열 길이와 같은 분무특성을 살펴보았다.

고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상 (Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation)

  • 이준순;박현욱;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.