• Title/Summary/Keyword: Gap형성

Search Result 428, Processing Time 0.023 seconds

$CO_2$ Laser Beam Welding and Formability of Steel Plates with Different Thicknesses (이종두께 강판의 $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Kim, J.O.;Lee, Y.S.
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 1996
  • The maximum butt-joint gap size in $CO_2$ laser beam welding of SAPH steel plates with different thicknesses and its bending formability were studied. In the range of the gap size$\geq$0.1mm, the optimal butt welding speed was faster than that of no gap (air gap) condition. This behaviour was independent on the difference of thickness at any combination. Also, the allowable gap size in steel plates with different thicknesses was larger than with same thicknesses. In the range of $T/T_0$(bead shape) $\geq$ 0.8, good bending formability was obtained at any combination of thickness. The formability was improved by reducing the hardness in weld bead using pre-heating process. Finally, FEM result of the laser beam welded underframe with different thicknesses was compared to that of the conventional spot welded underframe.

  • PDF

A Study on the Embedded Capacitor for High Frequency Decoupling (고주파용 디커플링 임베디드 캐패시터에 관한 연구)

  • Hong, Keun-Kee;Hong, Soon-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.918-923
    • /
    • 2008
  • We proposed an embedded capacitor with the unique electrode structure, which electrodes are located on the same plane and dielectric gap was formed by electrodes. We named it 'Gap type EC', and it was analyzed by the FEM(Finite element Method) program tool. The resonant frequency of Cap type EC was obtained at more higher frequency region. Also, resonant frequency was changed with the magnitude and thickness of electrodes. The Gap type EC with the dielectric gap of $50{\mu}m$ showed capacitance density of $55pF/cm^2$. This value is the higher than that of conventional EC. So, we concluded that the Gap type EC can be a good candidate for high frequency decoupling.

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

A Study on the Optical Properties of Diamod-Like Carbon Film (Diamond-Like Carbon 박막의 광학적 특성에 관한 연구)

  • 권도현;박성계;남승의;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.194-200
    • /
    • 2001
  • In this study, the optical properties of diamond-like carbon(DLC) films, which was synthesized by 13.56 MHz rf plasma enhanced chemical vapor deposition system(PECVD), were investigated. We observed the variation of the transmittance and optical band gap with respect to deposition condition. The change of the transmittance and optical band gap of the DLC films were investigated as a function of RF power, working pressure, and additional gas. The optical band gap decreased with the increase of RF power and working pressure. We could verify the bond structures change of DLC films by observing the content of hydrogen using FT-IR spectroscopy. And the addition of hydrogen and nitrogen decreased the optical band gap by the breakage of C-H bond of DLC films during the deposition.

  • PDF

Disturbance and Regeneration Process of the Pinus densiflora Forest in Mt. Worak (월악산에 분포하는 소나무(Pinus densiflora)림에서의 교란체제와 천이 과정)

  • 김홍은;권기철;정택상
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.2
    • /
    • pp.79-85
    • /
    • 2000
  • Mortality patterns ad changes of vegetation in newly formed gaps were investigated to examine the succession process of Pinus densiflora forest located at Mt. Worak. The main findings from this study were as follows: ⑴ The forest was dominated by P. densiflora and Quercus variabilis in the oversotry, while Q. mongolica, Q. serrata and Fraxinus sieboldiana in the mid-story. ⑵ In all study areas, the standing dead type was the most common factor influencing gap-forming mortality. ⑶ DBH analysis showed that Pinus densiflora community was replaced by Quercus variabilis community first, and then by quercus mongolica and quercus serrata community. ⑷ Seedlings of P. densiflora were discovered only at dry sites of the gap.

  • PDF

A Study on the Deposition Mechanism in PECVD Diamondlike Carbon Thin Films (PECVD 에 의한 다이아몬드성 탄소박막의 증착기구에 관한 연구)

  • Kim, Han;Joo, Seung-Ki
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.4
    • /
    • pp.420-425
    • /
    • 1994
  • 메탄을 원료가스로 하여 PECVD에 의해 다이아몬드성 탄소(DLC) 박막을 형성하였으며 이때 인 가전력의 크기 및 주파수 그리고 보조가스의 종류가 optical band gap의 크기에 미치는 영향에 대학여 연구하였다. DLC 박막의 optical band gap 은 증착되는 이온의 에너지가 증가할수록 감하였으며 불활성 기체를 보조가스로 사용하는 경우 인가전력에 따른 optical band gap의 크기가 큰폭으로 감소하였다. 소 소를 보조가스로 사용한 경우는 높은 인가전력(100W 이상)에서 optical band gap이 증가하는 것으로 밝 혀졌으며 본 연구에서 제안된 증착 기수의 모델에 의해 적절한 설명이 가능하였다.

  • PDF

Numerical Analysis for Stefan Problem in Mold-Casting with Air-Gap Resistance (주형/주물 접촉면에서의 접촉열저항을 고려한 상변화문제에 관한 연구)

  • 여문수;손병진;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.348-355
    • /
    • 1992
  • Casting structures and properties are determined by the solidification speed in the metal mold. The heat transfer characteristics of the interface between the mold and the casting is one of the major factors that control the solidification speed. According to Sully's research, the thermal resistance exists due to the air-gap formation at the mold-casting interface during the freezing process and the interface heat transfer coefficient is used to describe the degree of it. In this study, one-dimensional Stefan problem with air-gap resistance in the cylindrical geometry is considered and heat transfer characteristics is numerically examined. The temperature distribution and solidification speed are obtained by using the modified variable time step method. And the effects of the major parameters such as mold geometry, thermal conductivity, heat transfer coefficient and initial temperature of casting on the thermal characteristics are investigated.

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane (GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성)

  • Seol, Yang-Ho;Kweon, Jeong-Ohk;Kim, Yong-Jin;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.673-680
    • /
    • 2019
  • GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.