• Title/Summary/Keyword: Gangwon wind farm

Search Result 10, Processing Time 0.026 seconds

The Selection of Promising Wind Farm Sites in Gangwon Province using Multi Exclusion Analysis (다중 배제분석을 이용한 강원도 내 풍력발전단지 유망후보지 선정)

  • Park, Ung-Sik;Yoo, Neung-Soo;Kim, Jin-Han;Kim, Kwan-Soo;Min, Deok-Ho;Lee, Sang-Woo;Paek, In-Su;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • Promising onshore wind farm sites in Gangwon province of Korea were investigated in this study. Gangwon province was divided into twenty five simulation regions and a commercial program based on Reynolds averaged Navier-Stokes equation was used to find out wind resource maps of the regions. The national wind atlas with a period 2007-2009 developed by Korea institute of energy research was used as climatologies. The wind resource maps were combined to construct a wind resource map of Gangwon province with a horizontal spatial resolution of 100m. In addition to the wind resource, national environmental zoning map, distance from substation, residence and automobile road, Beakdudaegan mountain range, terrain slope, airport and military reservation district were considered to find out promising wind farm sites. A commercial wind farm design program was used to find out developable wind farm capacities in promising wind farm site with and without excluding environmental protection regions. The total wind farm capacities with and without excluding the protection regions were estimated to be 46MW and 598MW, respectively, when a 2MW commercial wind turbine was employed.

AEP Prediction of Gangwon Wind Farm using AWS Wind Data (AWS 풍황데이터를 이용한 강원풍력발전단지 발전량 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Ki;Kim, Byeong-Min;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.119-122
    • /
    • 2011
  • AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.

  • PDF

Prediction of Annual Energy Production of Gangwon Wind Farm using AWS Wind Data (AWS 풍황데이터를 이용한 강원풍력발전단지 연간에너지발전량 예측)

  • Woo, Jae-kyoon;Kim, Hyeon-Gi;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.72-81
    • /
    • 2011
  • The wind data obtained from an AWS(Automated Weather Station) was used to predict the AEP(annual energy production) of Gangwon wind farm having a total capacity of 98 MWin Korea. A wind energy prediction program based on the Reynolds averaged Navier-Stokes equation was used. Predictions were made for three consecutive years starting from 2007 and the results were compared with the actual AEPs presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from the prediction program were close to the actual AEPs and the errors were within 7.8%.

Prediction of Annual Energy Production of Wind Farms in Complex Terrain using MERRA Reanalysis Data (MERRA 재해석 자료를 이용한 복잡지형 내 풍력발전단지 연간에너지발전량 예측)

  • Kim, Jin-Han;Kwon, Il-Han;Park, Ung-Sik;Yoo, Neungsoo;Paek, Insu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • The MERRA reanalysis data provided online by NASA was applied to predict the annual energy productions of two largest wind farms in Korea. The two wind farms, Gangwon wind farm and Yeongyang wind farm, are located on complex terrain. For the prediction, a commercial CFD program, WindSim, was used. The annual energy productions of the two wind farms were obtained for three separate years of MERRA data from June 2007 to May 2012, and the results were compared with the measured values listed in the CDM reports of the two wind farms. As the result, the prediction errors of six comparisons were within 9 percent when the availabilities of the wind farms were assumed to be 100 percent. Although further investigations are necessary, the MERRA reanalysis data seem useful tentatively to predict adjacent wind resources when measurement data are not available.

AEP Prediction of a Wind Farm in Complex Terrain - WindPRO Vs. WindSim (복잡지형에 위치한 풍력발전단지의 연간발전량 예측 비교 연구)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Kim, Byeong-Min;Gwon, Il-Han;Baek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.1-10
    • /
    • 2012
  • The annual energy production of Gangwon wind farm was predicted for three consecutive years of 2007, 2008 and 2009 using commercial programs, WindPRO and WindSim which are known to be used the most for wind resource prediction in the world. The predictions from the linear code, WindPRO, were compared with both the actual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm and also the predictions from the CFD code, WindSim. The results from WindPRO were close to the actual energy productions and the errors were within 11.8% unlike the expectation. The reason for the low prediction errors was found to be due to the fact that although the wind farm is located in highly complex terrain, the terrain steepness was smaller than a critical angle($21.8^{\circ}$) in front of the wind farm in the main wind direction. Therefore no flow separation was found to occur within the wind farm. The flow separation of the main wind was found to occur mostly behind the wind farm.

Producing Wind Speed Maps Using Gangwon Weather Data (강원도 기상데이터를 이용한 풍속 지도 제작)

  • Kim, Gi-Hong;Youn, Jun-Hee;Kim, Baek-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2010
  • After oil shock, the importance of renewable energy has emerged and it came to the fore again as Korean government declared the policy on low-carbon green growth. Among various renewable energies, it is generally accepted that wind power is the most practical alternative. In this paper we showed the process of producing wind speed map from Gangwon Regional Meteorological Administration's 2008 data. We mapped monthly average and maximum wind speed and compared several interpolation methods applied to the weather data. This wind speed map, which reflects Gangwon's topographical and climatic regional characteristics, is expected to be a good tool for wind farm location analysis.

Wind Farm Siting in Mountainous Terrain By Geomorphometric Characterization (지형형태 분류에 의한 산악지형 내 풍력단지 입지평가)

  • Kim, Hyun Goo;Hwang, Hyo Jung;Kang, Yong Heack;Yun, Chang Yeol;Jung, Bi Rin;Song, Kyu Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2014
  • To develop a wind farm in a mountainous terrain like Korea, it is generally more advantageous to install wind turbines along a mountain ridge where has relatively better wind resource because that is open in all directions and free from shielding by the surrounding topography. In this study, the SRTM (Shuttle Radar Topography Mission) v4.1 3 arc-second resolution digital elevation database and the geomorphometric characterization software LandSerf v2.3 are used to extract ridge lines for assessing a wind farm siting in mountainous terrain. The effectiveness of wind farm siting along a ridge line is confirmed that the most of wind turbines in the Gangwon, Taegisan, and Maebongsan wind farms in Korea's mountainous terrain are placed along the primary and secondary ridge lines where wind resource is relatively outstanding.

Analyzing Site Characteristics and Suitability for Wind Farm Facilities in Forest Lands (산지 내 풍력발전단지 입지 특성 및 적합성 분석)

  • Kwon, Soon-Duk;Joo, Woo-Yeong;Kim, Won-Kyung;Kim, Jong-Ho;Kim, Eun-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.86-100
    • /
    • 2014
  • The purposes of this study are to provide a guideline for the suitability of wind farm facilities in forest lands and to suggest improvement plans of policies and systems to minimize the damage of forest lands. First, we implemented a literature review and field surveys to examine and select factors for the suitability of wind farm facilities in forest lands. Spatial database for selected location factors of wind farm facilities in forest lands was constructed to develop the suitability model for locating wind farm facilities focusing on Gangwon-do. Data used in this study include wind power resource, legal mountainous preserved area, forest roads, developed areas, forest class, and other spatial data. In order to find specific-sized potential areas for a certain number of wind farm turbines, we used block statistics and focal statistics methods. As a result, the areas for potential wind farm locations were 1,261ha from a block statistics method and 1,411ha from a focal statistics method. Based on the outputs of this research, it is required to make an urgent solution for the prevention of forest disaster and to prepare reduction measures for the destruction of ridge landscape.

Spatial Distribution and Regional Characteristics of Meteorological Damages to Agricultural Farms in Korea (우리나라 농업기상재해의 공간 분포 및 지역 특성 분석)

  • Song, Inhong;Song, Jung Hun;Kim, Sang Min;Jang, Min Won;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.45-52
    • /
    • 2012
  • Along with global warming, ever intensifying weather events have increased damages to agricultural farms and facilities. The objective of this study was to investigate the spatial distribution and regional characteristics of agricultural damages by extreme weather events. Agricultural disaster statistics provided by the National Emergency Management Agency were summed over for a 13-year period from 1998 to 2010 and used for the spatial analysis. Two indices of damage area ration and property damage per unit area were introduced to quantify regional agricultural damages. As the results, farm inundation accounted for the largest area primarily damaged by typhoons with heavy rainfalls. Most property damages to farm lands originated from farm erosion in the alpine regions by localized guerrilla rains. The two major causes of damages to greenhouse and livestock facilities were typhoon with strong wind and winter blizzards. Gangwon was the province of the largest property loss mostly from farm land erosion losses, followed by Gyeongnam, Jeonnam, and Chungnam where losses to greenhouse and livestock facilities were relatively greater. Property loss per unit area was also the greatest for the Gangwon province (4.91 M\/ha), followed by Gyongnam and Chungnam of 2.20 and 1.50 M\/ha, respectively. Unit loss for greenhouse and livestock facilities was 13.3 M\/ha, approximately 13 times greater than that for farm land (1.06 M\/ha). The study findings indicated the importance of reducing highland farm erosion and reinforcing farming facilities structures for agricultural disaster management.

A Study on Safe use of Pesticides and Pesticidal Poisoning Among the Korean Farmers (농약안전사용(農藥安全使用) 및 중독경험(中毒經驗)에 관(關)한 연구(硏究))

  • Yi, Taek-Ku
    • Journal of agricultural medicine and community health
    • /
    • v.6 no.1
    • /
    • pp.13-24
    • /
    • 1981
  • This study was conducted with 478 farm households located in Pyongtaek Gun of Gyonggi Do, Chongju City and Chongwon Gun of Chung Buk Do, and Hongchon Gun of Gangwon Do for the period of 10, September through 20, October 1980. It dealt with general features of the farmhouseholds, their practices of handling and using pescides, and relationship between safe use of pesticides and poisoning experiences. The results of the study are summarized as follows: 1. Of the total, 63.2% purchased pesticides mainly through the Agricultural Coops, and 95.4% transported them home separately from other goods. 2 Pesticides were sold contained mainly in glass bottles and paper bags. 3. Mixing of the respodents (87.5%) stored pesticides in sheds, warehouses and boxes. 4. Mixing containers and measuring tools were not used by the majority of the group studied. This indicates that there exist serious problems of safety and accuracy with regard to use of pesticides. 5. As to pesticide protective devices, gloves, respirators, goggles and boots were not used in general. Even in case of using them, their quality was not satisfactory. 6. Among the interviewees, 4.2% did not read pesticide label, 33.9% did not wash immediately when pesticide was spilled on the skin, 48.4% did not care the wind direction during pesticide application, and 17.0% did not wash hands when smoking a cigarette while pesticide is being handled. 7. Of the total, 40.4% were found to harvest vegetables within 10 days from the date of pesticide application, which indicates their unawareness of possible hazards by pesticide residues. 8. Empty pesticide containers or bags were not properly disposed of by majority of the respondents. Furthermore, impacts on the environment by the misuse or abuse of pesticides were not understood by 67.6% 9. Of the interviewees, 48.7% were found to have not received instructions on safe use of pesticides. 10. The rate of pesticidal poisoning experience was about 28.0% if minor symptoms excluded, and it rose to about 44.0% if included. Meanwhile, the rate of pesticidal poisoning tends to increase with the size of farm. 11. The study failed to show a statistically significant relationship between the rate of pesticidal poisoning and use of mixing container and/or measuring tools. However, use of gloves showed a statistical significance on the rate of pesticidal poisoning. 12. Among the poisoned cases, 19.0% were cared for in either hospitals or clinics.

  • PDF