• Title/Summary/Keyword: Ganglia, Spinal

Search Result 53, Processing Time 0.029 seconds

Localization of Motor and Sensory Neurons Innervating Kidney, Shinsu(BL23) and Kyongmun(GB25) in the Rat (흰쥐의 신장(腎臟) 신유(腎兪) 경문(京門)을 지배하는 운동(運動)과 감각신경세포체(感覺神經細胞體)에 대한 연구(硏究))

  • Ryu, Suk-Hyun;Lee, Chang-Hyeon;Lee, Sang-Ryong
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.385-398
    • /
    • 1997
  • The location and local arrangement of motor, sensory neurons within brain stem, nodose ganglia, spinal ganglia and sympathetic ganglia projecting to rat's kidney and meridian point BL 23, GB 25 were investigated by HRP immunohistochemical methods following injection of 5% WGA-HRP into left kidney and meridian point BL 23, GB 25. Following injection of WGA-HRP into left kidney, anterogradely labelled sensory neurons were founded within either nodose ganglia and spinal ganglia. The sensory neurons innervating rat's left kidney were observed within spinal ganglia $T_{7}{\sim}L_3$. Sympathetic motor neurons innervating rat's left kidney were labelled within left suprarenal ganglia, either celiac ganglia, superior mesenteric ganglia, and sympathetic chain ganglia $T_{1}{\sim}L_3$. Sympathetic chain ganglia were concentrated in $T_{12}{\sim}L_1$. The sensory neurons innervating rat's meridian point BL 23 were founded within spinal ganglia $T_{2}{\sim}L_2$. They were numerous in spinal in ganglia $T_{10}{\sim}T_{12}$. Sympathetic motor neurons innervating rat's meridian point BL 23 were observed in suprarenal ganglia and greater splanchnic trunk, sympathetic chain ganglia from $T_1$ to $L_3$. They were concentrated in $T_{12}{\sim}L_3$. The sensory neurons innervating rat's meridian point GB 25 were labelled within spinal ganglia $T_{6}{\sim}T_{13}$. They were numerous in from T10 to $T_{12}$. Sympathetic motor neurons innervating rat's meridian point GB 25 were labelled within greater splanchnic trunk and sympathetic chain ganglia $T_{12}{\sim}L_3$. They were concentrated in $T_{13}{\sim}L_1$. This results neuroanatomically imply that the location of rat's motor and sensory neurons innervating meridian point BL 23 and GB 25 were closely related that of innervating kidney.

  • PDF

Morphological Studies on the Localization of Neurons Projecting to the Meridian Points Related to the Facial Nerve Paralysis in the Rat Using the Neural Tracers (신경추적자(神經追跡子)를 이용한 얼굴신경마비(神經痲痺)와 관련(關聯)된 혈(穴)들을 지배(支配)하는 신경세포체(神經細胞體)의 표식부위(標識部位)에 대(對)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jum-Young;Lee, Sang-Ryoung;Lee, Chang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.58-71
    • /
    • 1997
  • In order to the location and local arrangement of nerve cell bodies and nerve fibers projecting to the meridian points related to facial nerve paralysis in the rat using the neural tracers, CTB and WGA-HRP, labeled neurons the were investigated by immunohistochemical and HRP histochemical methods following injection of 2.5% WGA-HRP and 1% CTB into Hyopko$(S_6)$. Chichang$(S_4)$, Sugu$(GV_{26})$, Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$. Following injection of Hyopko$(S_6)$, Chichang$(S_4)$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus, reticular nucleus and hypoglossal nucleus. labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, sensory root of trigeminal nerve, oral, interpolar and caudal part of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus and $C_{1-2}$ spinal ganglia. Following injection of Sugu$(GV_{26})$, labeled motor neurons were founded in facial nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in spinal trigeminal tract, trigeminal motor nucleus, mesencephalic trigeminal tract, oral. interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus, dorsal part of reticular part and $C_{1-2}$ spinal ganglia. Following injection of Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, inferior olovary nucleus, medullary reticular field and lamina I-IV of $C_{1-2}$ spinal cord. Location of nerve cell body and nerve fibers projecting to the meridian points related to the facial nerve paralysis in the rats were found in facial nucleus and trigeminal motor nucleus. Sensory neurone were found in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius. lateral reticular nucleus, medullary reticular field.

  • PDF

Neuroanatomical Studies on the Acupoints Related to the Large Intestine (대장(大腸)과 관련(關聯)된 경혈(經穴)들의 신경해부학적(神經解剖學的) 연구(硏究))

  • Kang, Chang-Soo;Lee, sang-ryoung;Lee, Chang-Hyun;Nam, Yong-Jae;Lee, Kwang-Gyu
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.95-117
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation between the meridian, acupoints and viscera using neuroanatomical tracers. The common locations of the spinal ganglia, sympathetic chain ganglia, spinal cord and brain projecting to the large intestine meridian were observed following injection of transganglionic tracer, WGA-HRP and transsynaptic neurotropic virus, pseudorabies virus(PRV), Bartha strain(Ba) and PRV-Ba-Gal (Galactosidase)) into the the large intestine(cecum, colon and rectum), ST37 and LI4. After survival times of 96 hours following injection into the thirty rats with WGA-HRP, PRV-Ba and PRV-Ba-Gal. They were perfused, and their spinal ganglia, sympathetic chain ganglia, spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by HRP and X-gal histochemical and PRV immunohistochemical staining method, and observed with a light microscope. The results were as follows : 1. WGA-HRP labeled neurons innervating the large intestine were observed bilaterally within the T13-L4 sympathetic chain ganglia, and T9-11 spinal ganglia. WGA-HRP labeled neurons innervating ST37 were observed within the L3-5 sympathetic chain ganglia, and L2-4 spinal ganglia. WGA-HRP labeled neurons innervating LI4 were observed in the middle cervical ganglion and stellate ganglion, and C5-8 spinal ganglia. 2. In spinal cord, PRV-Ba labeled neurons projecting to the large intestine, ST37 and LI4 were found in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina N, V, VII(intermediolateral nucleus), Ⅸ, X and dorsal nucleus. 3. In medulla oblongata, PRV-Ba and PRV-Ba-Gal labeled neurons projecting to the large intestine, ST37 and LI4 were commonly found in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus and gigantocellular nucleus. 4. In pons, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in locus coeruleus, Kolliker-Fuse nucieus and A5 cell group. 5. In midbrain, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in central gray matter. 6. In diencephalon, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in paraventricular hypothalamic nucleus. These results suggest that PRV-Ba and PRV-Ba-Gal labeled common areas projecting to the large intestine may be correlated to that of the large intestine meridian, ST37 and LI4. Especially, These morphological results provide that interrelationship of meridian-acupoints -viscera may be related to the central autonomic pathways.

  • PDF

Localization of Sensory Neurons Innervating the Rat Intestine Using the Cholera Toxin B Subunit(CTB) and Wheat Germ Agglutinin-Horseradish Peroxidase(WGA-HRP) (표지방식을 이용한 흰 쥐 복강 내장을 지배하는 감각신경세포체와 신경섬유의 표지부위)

  • Lee, Dong-Hyup;Lee, Chang-Hyun;Lee, Moo-Sam
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.1
    • /
    • pp.75-96
    • /
    • 1998
  • The local arrangement of sensory nerve cell bodies and nerve fibers in the brain stem, spinal ganglia and nodose ganglia were observed following injection of cholera toxin B subunit(CTB) and wheat germ agglutinin-horseradish peroxidase(WGA-HRP) into the rat intestine. The tracers were injected in the stomach(anterior and posterior portion), duodenum, jejunum, ileum, cecum, ascending colon or descending colon. After survival times of 48-96 hours, the rats were perfused and their brain, spinal and nodose ganglia were frozen sectioned ($40{\mu}m$). These sectiones were stained by CTB immunohistochemical and HRP histochemical staining methods and observed by dark and light microscopy. The results were as follows: 1. WGA-HRP labeled afferent terminal fields in the brain stem were seen in the stomach and cecum, and CTB labeled afferent terminal fields in the brain stem were seen in all parts of the intestine. 2. Afferent terminal fields innervating the intestine were heavily labeled bilaterally gelalinous part of nucleus of tractus solitarius(gelNTS), dorsomedial part of gelNTS, commissural part of NTS(comNTS), medial part of NTS(medNTS), wall of the fourth ventricle, ventral border of area postrema and comNTS in midline dorsal to the central canal. 3. WGA-HRP labeled sensory neurons were observed bilaterally within the spinal ganglia, and labeled sensory neurons innervating the stomach were observed in spinal ganglia $T_2-L_1$ and the most numerous in spinal ganglia $T_{8-9}$. 4. Labeled sensory neurons innervating the duodenum were observed in spinal ganglia $T_6-L_2$ and labeled cell number were fewer than the other parts of the intestines. 5. Labeled sensory neurons innervating the jejunum were observed in spinal ganglia $T_6-L_2$ and the most numerous area in the spinal ganglia were $T_{12}$ in left and $T_{13}$ in right. 6. Labeled sensory neurons innervating the ileum were observed in spinal ganglia $T_6-L_2$ and the most numerous area in the spinal ganglia were $T_{11}$ in left and $L_1$ in right. 7. Labeled sensory neurons innervating the cecum were observed in spinal ganglia $T_7-L_2$ and the most numerous area in the spinal ganglia were $T_{11}$ in left and $T_{11-12}$ in right. 8. Labeled sensory neurons innervating the ascending colon were observed in spinal ganglia $T_7-L_2$ in left, and $T_9-L_4$ in right. The most numerous area in the spinal ganglia were $T_9$ in left and $T_{11}$ in right. 9. Labeled sensory neurons innervating the descending colon were observed in spinal ganglia $T_9-L_2$ in left, and $T_6-L_2$ in right. The most numerous area in the spinal ganglia were $T_{13}$ in left and $L_1$ in right. 10. WGA-HRP labeled sensory neurons were observed bilaterally within the nodose ganglia, and the most numerous labeled sensory neurons innervating the abdominal organs were observed in the stomach. 11. The number of labeled sensory neurons within the nodose ganglia innervating small and large intestines were fewer than that of labeled sensory neurons innervating stomach These results indicated that area of sensory neurons innervated all parts of intestines were bilaterally gelatinous part of nucleus tractus solitarius(gelNTS), dorsomedial part of gelNTS, commissural part of NTS (comNTS), medial part of NTS, wall of the fourth ventricle, ventral border of area postrema and com NTS in midline dorsal to the central canal within brain stem, spinal ganglia $T_2-L_4$ and nodose ganglia. Labeled sensory neurons innervating the intestines except the stomach were observed in spinal ganglia $T_6-L_4$. The most labeled sensory neurons from the small intestine to large intestine came from middle thoracic spinal ganglia to upper lumbar spinal ganglia.

  • PDF

The Effects of Sophorae radix Extracts on CGRP Immunoreactive Neurons of Spinal Cord and Ganglia in Experimental Arthritic Rat Model (실험적 관절염 흰쥐 모델에서 고삼추출액이 척수와 척수신경절의 CGRP 면역반응 신경원에 미치는 영향)

  • Shin Hyun Jong;Lee Kwang Gyu;Ryuk Sang Won;Lee Sang Ryong;Ko Byung Moon;Lee Chang Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.117-123
    • /
    • 2002
  • To investigate the antiinflammatory and analgesic effects of Sophorae radix extracts administered to the arthritic rat model, immunohistochemical stains for CGRP in the L4, L5 and L6 spinal cord and ganglia were done, and paw swelling thickness were measured. Complete Freund,s Adjuvant(CFA) were injected to subcutaneous tissue of left foot paw of rats to induce arthritis. Sophorae radix extracts was administered immediately after CFA injection for 10 days. The spinal cord and ganglia were frozen sectioned(30㎛). These sections were stained by CGRP immunohistochemical staining method, and observed with light microscope. The results were as follows : 1. The change of paw swelling thickness of experimental group decreased from 4 day to 10day after CFA injection compared to control group. 2. The change of differential leukocytes counts of experimental group increased the ratio of lymphocytes. and decreased the ratio of neutrophils compared to control group. 3. The change of CGRP immunoreactive nerve fiber of dorsal horn of experimental group was dense stained compared to control group. 4. The number of CGRP immunoreactive neurons of L4 and L5 spinal cord of experimental group was less than in those control group. These results suggested that Sophorae radix extracts reduces the number of CGRP immunoreactive neurons and nerve fibers of spinal cord and ganglia, and decrease paw swelling thickness in arthritic rat model, which may be closely related to analgesic and antiinflammatory effects of Sophorae radix.

Studies on the Effect of Ginseng Extract on Chick Embryonic Nerve and Muscle Cells (인삼이 신경 및 근육 세포에 미치는 영향에 대한 연구)

  • 김영중;김은경
    • YAKHAK HOEJI
    • /
    • v.24 no.3_4
    • /
    • pp.143-150
    • /
    • 1980
  • The effect of ginseng saponin on chick embryonic dorsal root ganglia organ culture and brain, spinal cord, muscle dissociation cultures was studied. The fiber outgrowth in explanted chick embryonic dorsal root ganglia was markedly induced by water and alcohol extracts of ginseng, total ginseng saponin, protopanaxadiol and protopanaxatriol glycosides as well as ginsenosides R/sub b1/, R/sub d/, R/sub 0/+R/sub a/+R/sub b1/, and R/sub b2/+R/sub c/+R/sub e/ mixtures. The life span of the cultured chick embryonic dorsal root ganglia and potentiation of nerve cell density were also observed with all of these ginseng saponins. The effect of ginseng saponin on chick embryonic dorsal root ganglia organ culture was more marked in the absence of the chick embryonic extract which was known to contain nerve growth factor-like material in the culture media. However, the ginseng saponin did not influence the cultured central nervous system such as brain and spinal cord cells and cultured skeletal muscle cells with respect to the morphological changes, maturation and life span of these cells.

  • PDF

The changes of nociception and the signal molecules expression in the dorsal root ganglia and the spinal cord after cold water swimming stress in mice

  • Feng, Jing-Hui;Sim, Su-Min;Park, Jung-Seok;Hong, Jae-Seung;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4℃) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice. Here, we show that 3 min of CWSS was sufficient to produce antinociception in tail-flick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS. CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.

Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP (흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구)

  • Lee, Chang-Hyun;Chung, Ok-Bong;Ko, Byung-Moon;Lee, Bong-Hee;Kim, Soo-Myung;Kim, In-Shik;Yang, Hong-Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.

Neuroanatomical Studies on Yangji(TE4) in the Rats (흰쥐의 양지(TE4)에 대한 신경해부학적 연구)

  • Lee, Sang Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.30-34
    • /
    • 2018
  • This research was practiced to comparative investigate the distribution of sensory and motor neuron linkaged with Yangji(TE4) by using neural-tracer technology. A total 16 S-D rats were used in the present research. After anesthesia, the rats received micro-injection of $6{\mu}{\ell}$ of cholera toxin B subunit(CTB) into the relation positions of the Yangji(TE4), in the human body for observing the distribution of the linkaged sensory neurons in dorsal root ganglia(DRGs) and motor neurons in the spinal cord(C3~T4) and sympathetic ganglia. 3 days after the micro injection, the rats were anesthetized and transcardially perfused saline and 4% paraformaldehyde, followed by routine section of the DRGs, sympathetic chain ganglia(SCGs) and spinal cord. Marked neurons and nerve fibers were detected by immunohistochemical method and observed by light microscope. The marked neurons were recorded and counted. From this study the distribution of primary sensory and motor neurons linkaged with Yangji(TE4) were concluded as follows. Yangji(TE4) dominated by spinal segments of C5~T1, C6~T4, individually.

Neuroanatomical Comparative Studies on the Motor and Sensory Neurons Associated with Cheonji(PC1) in the Rats (흰쥐에서 천지(PC1)와 관련된 운동신경과 감각신경의 분포영역에 대한 신경해부학적 연구)

  • Lee, Sun-Ho;Lee, Chang-Hyun;Lee, Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.32 no.3
    • /
    • pp.136-143
    • /
    • 2015
  • This study was performed to comparative investigate the distribution of primary sensory and motor neurons associated with Cheonji(PC1) acupoint by using neural tracing technique. A total 4 SD rats were used in the present study. After anesthesia, the rats received microinjection of $6{\mu}l$ of cholera toxin B subunit(CTB) into the corresponding sites of the acupoints Cheonji(PC1) in the human body for observing the distribution of the related primary sensory neurons in dorsal root ganglia(DRGs) and motor neurons in the spinal cord(C3~T4) and sympathetic ganglia. Three days after the microinjection, the rats were anesthetized and transcardially perfused saline and 4% paraformaldehyde, followed by routine section of the DRGs, sympathetic chain ganglia(SCGs) and spinal cord. Labeled neurons and nerve fibers were detected by immunohistochemical method and observed by light microscope equipped with a digital camera. The labeled neurons were recorded and counted. From this research, the distribution of primary sensory and motor neurons associated with Cheonji(PC1) acupoints were concluded as follows. Muscle meridian related Cheonji(PC1) are controlled by spinal segments of C5~T1, C6~T4, respectively.