• Title/Summary/Keyword: Gamma-ray spectrometry

Search Result 89, Processing Time 0.034 seconds

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

Determination of % Contents of Uranium and Thorium in Natural Radioactive Ores by ${\gamma}$-ray Spectrometry (${\gamma}$-선 분광법을 이용한 한국산 방사성 원광내의 Uranium Thorium 함유량 측정)

  • 조성원;정문규;유건중;홍치유
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.273-278
    • /
    • 1970
  • The Contents of uranium and thorium in radioactive ores produced in Korea were determined by gamma-ray spectrometry utilizing Ge (Li) diode detector. Both methods, namely, gamma-ray spectrometries of activated samples and non-activated samples, were tested and compared for their accuracies and rapidness in determination of contents. Also the useful-ness of application of Ge(Li) diode detector to the determination of uranium and thorium contents in ores was discussed in detail.

  • PDF

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

Background Reduction for the ${\gamma}$-Ray Spectrometry of Environmental Radioactivity (환경방사능의 감마선 분광분석을 위한 백그라운드 소멸)

  • Seo, Bum Kyoung;Lee, Kil Yong;Yoon, Yoon Yeol;Lee, Dae Won
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.212-220
    • /
    • 2001
  • This study was performed to establish the analytical method of radium and radon in various environmental samples with the ${\gamma}$-ray spectrometry. The major problem in the measurements of low level ${\gamma}$-ray, such as environmental radioactivity, is the fluctuation of ${\gamma}$-ray background spectrum. To overcome this problem, a nitrogen gas was filled up in the detector chamber to reduce the background counts due to airborne radioactivities, i.e., $^{214}Pb$ and $^{214}Bi$, the daughters of $^{222}Rn$ in air. When nitrogen gas flowed around the detector, peak counts of ${\gamma}$-rays from the daughters of $^{222}Rn$ decreased about 80% below 1 MeV and about 20~50% above 1 MeV. The use of nitrogen purging results in approximately tenfold increment of sensitivity.

  • PDF

Broad Beam Gamma-Ray Spectrometric Studies with Environmental Materials

  • El-Kateb, Abdul-Hamid Hussein
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Background: Gamma-ray spectrometry helps in radiation shielding problems and different applications of radioisotopes. Experimental arrangements including broad beam geometries are widely used. The aim is to investigate and evaluate the ${\gamma}-ray$ spectra via attenuation by environmental materials. Materials and Methods: The photo peak to nominated parts in the ${\gamma}-ray$ spectra and the attenuation coefficients ${\mu}_b/{\rho}$ from broad beam geometries are measured for the materials water, soil, sand and cement at the energies 0.662, 1.25, and 1.332 MeV with a $3{^{\prime}^{\prime}}{\times}3{^{\prime}^{\prime}}$ NaI(Tl) detector. Results and Discussion: The ${\gamma}-ray$ spectra vary according to changes in the effective atomic number $Z_{eff}$ of the attenuator, the photon energy and the solid angle. The peak to total ratios are the most sensitive parts to variations in the experimental conditions and overturn in the region 0.663 MeV to 1.332 MeV. This is indicated as inversion trend. The results are discussed in view of $Z_{eff}$ and the experimental conditions. The intensity build-up is larger at the lower energy and larger scattering angles in agreement with Klein-Nishina formula and other results. The build-up factor B is$${\sim_=}$$1 at high ${\gamma}-energies$ and small scattering angles. Conclusion: The sensitivity to material characteristics decrease gradually from peak: to total, to Compton valley, to Compton plateau ratios. Rigorous collimation is necessary at small energies. Cement, of the largest $Z_{eff}$, is characterized by the maximum broad beam mass attenuation coefficients ${\mu}_b/{\rho}$. The obtained results provide information to decide for the suitable experimental set-up based on aim of the work.

High sensitivity determination of iridium contents in ultra-basic rocks by INAA with coincidence gamma-ray detection

  • Ebihara, Mitsuru;Shirai, Naoki;Kuwayama, Jin;Toh, Yosuke
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.423-428
    • /
    • 2022
  • Very low contents (in the range of 10-9 g/g) of Ir in mantle-derived rock samples (komatiites) were non-destructively determined by INAA coupled with coincidence gamma-ray spectrometry using 16 Ge detectors. Aliquots of the same samples were analyzed by NiS fire-assay ICP-MS for Ir and other platinum group elements. Because the INAA procedure used in this study is non-destructive and is almost free from spectral interference in gamma-ray spectrometry, the INAA values of Ir contents obtained in this study can be highly reliable. Iridium values obtained by ICP-MS were consistent with the INAA values, implying that the ICP-MS values of Ir obtained in this study are equally reliable. Under the present experimental conditions, detection limits were estimated to be 1 pg/g, which corresponds to 0.1 pg for a sample mass of 0.1 g. These levels can be even lowered by an order of magnitude, if necessary, which cannot be achieved by ICP-MS carried out in this study.

DETERMINATION OF BURNUP AND PU/U RATIO OF PWR SPENT FUELS BY GAMMA-RAY SPECTROMETRY

  • Park, Kwang-June;Ju, June-Sik;Kim, Jung-Suk;Shin, Hee-Sung;Chun, Yong-Bum;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1307-1314
    • /
    • 2009
  • The isotope ratio of $^{134}Cs/^{137}Cs$ in a spent PWR fuel sample was obtained with a newly developed gamma/neutron combined measuring system at KAERI. Burnup and Pu/U ratio of the spent fuel sample were determined by using the measured isotope ratio and the burnup-isotope ratio correlation equations calculated from the ORIGEN-ARP computer code. The results were compared and evaluated with the chemically determined burnup and Pu/U ratio. As a result of the comparative evaluation, the nondestructively determined burnup and Pu/U ratio values showed a good agreement with the chemically obtained results to within a 4.5% and 0.8% difference, respectively.

Nuclide Identification of Gamma Ray Energy Peaks from an Air Sample for the Emergency Radiation Monitoring (비상시 환경방사능 모니터링을 위한 공기부유진 시료의 감마선에너지 스펙트럼에 대한 핵종판별)

  • Byun, Jong-In;Yoon, Seok-Won;Choi, Hee-Yeoul;Yim, Seong-A;Lee, Dong-Myung;Yun, Ju-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.170-175
    • /
    • 2009
  • For the emergency radiation monitoring using gamma spectrometry, we should sufficiently survey the background spectra as environmental samples with systematic nuclide identification method. In this study, we obtained the gamma ray energy spectrum using a HPGe gamma spectrometry system from an air sample. And we identified nuclide of the gamma ray energy peaks in the spectrum using two methods -1) Half life calculation and 2) survey for cascade coincidence summing peaks using nuclear data. As the results, we produced the nuclide identification results for the air sample.