• 제목/요약/키워드: Gamma-ray source

검색결과 273건 처리시간 0.026초

Thermal Transitions of the Drawn Film of a Nylon 6/Layered Silicate Nanocomposite

  • Park Soo-Young;Cho Yang-Hwan
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.156-161
    • /
    • 2005
  • The thermal transitions of a nylon 6/layered silicate nanocomposite were studied by differential scanning calorimetry and in-situ synchrotron X-ray diffraction. The drawn film of the nylon 6/layered silicate nanocomposite typically showed three endotherms in the DSC thermogram; a very broad endotherm at $\sim120^{\circ}C(T_{1})$, a double-melting endotherm at $\sim215^{\circ}C(T_{2})$, and a high temperature endotherm at $\sim240^{\circ}C(T_{3})$. The drawn film of the nylon 6/ layered silicate nanocomposite was comprised of a mixture of the $\alpha and \gamma$ forms, with $the \alpha form$ being generated by drawing the pressed film having $the \gamma form$. The melting and crystallization of the crystals were observed at the above thermal transitions during the heating experiment performed at the Pohang X-ray synchrotron radiation source (4C2). The newly generated form was meta-stable and melted $at {\sim}T_{1}$. The double-melting $at {\sim}T_{2}$ was due to the exothermic crystallization of $the \alpha form$ during the main endothermic melting of $the \gamma form$. $The \alpha form$ crystallized $at {\sim}T_{2}$ and melted $at {\sim}T_{3}$.

MOGABA: Monitoring of Gamma-ray Bright AGN with KVN 21-m radio telescopes at 22, 43 and 86GHz

  • 이상성;변도영;백준현;한명희;양지혜;손봉원
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.239.2-239.2
    • /
    • 2012
  • We report preliminary results of MOGABA project for monitoring total flux density, linearly polarized flux, and polarization angle at 22, 43 and 86GHz of Gamma-ray bright AGN (Active Galactic Nuclei) with KVN (Korean VLBI Network) 21-m radio telescopes. The project has been conducted in one year since May 2011 with an effective monitoring cycle of 1 week, observing four main objects (3C 454.3, BL Lac, 3C 273, and 3C 279). More objects were included in the source list when they had flared in Gamma-ray. Especially, we included a compact radio source at the Galactic center, SgrA* since Jan. 2012. In this paper, we report the current status of the project and preliminary results for the monitoring observations.

  • PDF

방사능 폭발물의 X-ray 영상판독에 관한 연구 (A Study on the X-ray Image Reading of Radiological Dispersal Device)

  • 정근우;박경진
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

A proposed new configuration of a shuffle-dwell gamma irradiator

  • Wu, Hsingtzu
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3176-3180
    • /
    • 2022
  • A gamma irradiator is a well-developed installation for gamma radiation sterilization. A "shuffle-dwell" mode is preferable for high dose applications. A novel configuration of a shuffle-dwell gamma irradiator is proposed to increase energy utilization and throughput, which would result in higher profitability. While the minimum distance between any irradiation position and each source pencil, the minimum distance between the neighboring irradiation positions and the size of source pencils are kept the same as the current configuration, the irradiation positions and source pencils are rearranged based on the fact that radiation is emitted in an isotropic fashion. The computational results suggest that the proposed configuration requires an 8.7% smaller area and exposes the product to 11.8% more gamma radiation in a 10.7% shorter irradiation time. In other words, the proposed configuration needs a smaller area and shorter irradiation time to have a better performance compared to the current shuffle-dwell gamma irradiator. Note that the claim is based primarily on an analytical calculation. Experimental and manufacturing among other practical considerations will be taken into account in the future work to exhaustively evaluate the performance of the proposed configuration and to compare it with that of the traditional configuration.

A Candidate of KVN KSP: Origins of Gamma-ray flares in AGNs

  • Lee, Sang-Sung;Kang, Sincheol;Han, Myoung-Hee;Algaba-Marcos, Juan-Carlos;Byun, Do-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Trippe, Sascha;Wajima, Kiyoaki;Miyazaki, Atsushi
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • We propose a three-year Key Science Program (KSP) consisting of VLBI monitoring observations and single dish (SD) rapid response observations (RRO). The VLBI monitoring observations are comprised of ten 24-hr observations per year (every month) of about 30 gamma-ray brigt active galactic nuclei (AGNs) with Korea VLBI Network (KVN) at 22, 43, 86, and 129 GHz. The SD RROs may consist of twelve 7-hr observations per source (every week for 3 months after triggering) of gamma-ray flaring sources with two KVN SD telescopes at 22, 43, and 86 GHz in dual polarization. We expect one or two sources per year for the SD RROs. Gamma-ray flares of AGNs are known to be occured in innermost regions of relativistic jets which radiate in whole ranges of electromagnetic spectra due to synchrotron radiation, syschrotron self absorption, inverse-compton scttering, doppler boosting etc. Possible explanations of the gamma-ray flares in AGNs are a) shocks-in-jets propagating within jet flow and b) bending of the whole jets. For both cases, we should expect changes in polarization, luminosity, particle distribution, and structures of jets at mas-scale. The multifrequency simultaneous VLBI/SD observations with KVN are the best tool for detecting such changes correlated with gamma-ray flares. This KSP proposal aims to answer the fundamental questions about the basic nature of the flares of AGNs.

  • PDF

방류수의 방사능 오염 측정을 위한 배열형 SiPM 기반 방사선 검출 센서 제작 (Development of Radiation Sensor Based on Array SiPM for Measurement of Radioactive Contamination in Effluent)

  • 김정호;박혜민;주관식
    • 센서학회지
    • /
    • 제27권4호
    • /
    • pp.232-236
    • /
    • 2018
  • A radiation detection sensor was developed and characterized by combining three types of CsI(Tl) scintillators and an array-type SiPM to detect the radioactive contamination of discharged water in real time. The characterization results showed that type 3 exhibited the most desirable characteristics in response linearity (R-square: 0.97889) according to detection sensitivity and incident radiation dose. Furthermore, in terms of spectral characteristics, type 3 exhibited 16.54% at 0.356 MeV (the emission gamma ray energy of $^{133}Ba$), 10.28% at 0.511 MeV (the emission gamma ray energy of $^{22}Na$), 9.68% at 0.356 MeV (the emission gamma ray energy of $^{137}Cs$), and 2.55% and 4.80% at 1.173 MeV and 1.332 MeV (the emission gamma ray energies of $^{60}Co$), respectively. These measurements confirmed the good energy characteristics. The results were used to evaluate the spectral characteristics and energy linearity in a mixed source using type 3 with the best detection characteristics. It was confirmed that the gamma ray peaks of $^{133}Ba$, $^{22}Na$, $^{137}Cs$, and $^{60}Co$ were well resolved. Moreover, it was confirmed that R-square, which is an indicator of energy linearity, was 0.99986. This indicates a good linearity characteristic. Based on this study, further commercialization studies will contribute to measurements in real time and to the management of the contamination caused by radioactive wastewater or radioactive material leakage, which originate from facilities that use radioactive isotopes or care facilities.

MOGABA: Monitoring of Gamma-ray Bright AGN with KVN 21-m radio telescopes at 22 and 43GHz

  • 이상성;양지혜;변도영;손봉원
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • We introduce an ongoing project for monitoring total flux density at 22 and 43GHz, linearly polarized flux, and polarization angle at 22GHz of Gamma-ray bright AGN (Active Galactic Nuclei) with KVN (Korean VLBI Network) 21-m radio telescopes. The project started in May, 2011 with an effective monitoring cycle of 4 days, observing four main objects (3C 454.3, BL Lac, 3C 273, and 3C 279). More objects were included in the source list when they had flared in Gamma-ray. In this paper, we report the current status of the project and preliminary results for the monitoring observations.

  • PDF

KOMAC 양성자 선형가속기를 이용한 천연 텅스텐 핵반응에 대한 감마선 스펙트럼 측정에 대한 연구 (A Study on Measurement of Gamma-ray Spectrum for the Natural Tungsten nuclear reaction by using KOMAC proton Linear Accelerator)

  • 이삼열
    • 한국방사선학회논문지
    • /
    • 제12권2호
    • /
    • pp.133-138
    • /
    • 2018
  • 양성자가속기연구센터(KOMAC)의 100-MeV 양성자 선형가속기에서 생성된 고에너지 양성자를 사용하여 천연 텅스텐과 핵반응을 일으켰다. 핵반응을 통해 생성된 다양한 핵종으로 부터의 감마선은 HPGe 검출기 감마선 분광시스템을 사용하여 측정하였다. 감마선 표준선원은 에너지 교정 및 검출기의 효율 측정에 사용되었다. 측정된 스펙트럼에서 관찰된 감마선을 분석한 결과 방사성 핵종은 $^{167}Re$, $^{178}Re$, $^{179}Re$, $^{180}Re$, $^{181}Re$, $^{182}Re$, $^{184}Re$, $^{172}Ta$, $^{174}Ta$, $^{178}Ta$, $^{182}Ta$, $^{184}Ta$, $^{175}W$, $^{176}W$, $^{177}W$$^{179}W$ 으로 총 16 종류의 핵종이 생성되었다. 이 연구의 결과는 미래의 핵융합, 천체 물리학 및 핵의학 응용 분야에 적용될 것으로 생각된다.

비파괴검사 분야에서 방사선원의 위치 확인을 위한 산화납 기반 방사선 검출기 설계에 관한 연구 (The Study on Design of lead monoxide based radiation detector for Checking the Position of a Radioactive Source in an NDT)

  • 안기정
    • 한국방사선학회논문지
    • /
    • 제11권4호
    • /
    • pp.183-188
    • /
    • 2017
  • 최근, 감마선 조사기의 자동 원격 조사 제어기가 오동작하여 방사선작업종사자가 방사선 피폭 사고가 지속적으로 보고되고 있다. 이에 NDT 분야에서는 방사선에 대한 잠재적 사고를 미연에 방지하기 위한 방사선원 모니터링 시스템 구축에 많은 시간과 재원을 투자하고 있다. 이에 본 연구에서는 다양한 비파괴검사장비에 범용적으로 적용할 수 있는 방사선원 위치 모니터링 시스템의 개발을 위한 선행연구로써 몬테카를로 시뮬레이션을 통해 산화납 기반 방사선 검출기에 대한 감마선 응답 특성을 모의 추정하였다. 연구 결과, 방사선 검출기의 최적화 두께는 방사선원에서 방사되는 감마선 에너지에 따라 상이하며 에너지가 증가함에 따라 최적화 두께가 점차 증가하는 것으로 나타났다. 결론적으로 PbO 기반 방사선 검출기의 최적화 두께는 Ir-192에 대하여 $200{\mu}m$, Se-75 $150{\mu}m$, Co-60 $300{\mu}m$로 분석되었다. 이러한 연구 결과를 바탕으로 범용적으로 적용하기 위하여 2차 전자 평형을 고려한 PbO 기반 방사선 검출기의 적절한 두께는 $300{\mu}m$로 평가되었다. 이러한 결과는 차후 다양한 NDT 장비에 범용적으로 적용하기 위한 방사선원 위치 모니터링 시스템을 개발 시 방사선 검출기에서 요구되는 적절한 두께를 결정하는데 있어 기초자료로 활용될 수 있을 것으로 사료된다.