• 제목/요약/키워드: Gamma-ray exposure

검색결과 94건 처리시간 0.025초

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Study of n/γ discrimination using 3He proportional chamber in high gamma-ray fields

  • Choi, Joonbum;Park, Junesic;Son, Jaebum;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.263-268
    • /
    • 2019
  • The $^3He$ proportional chamber is widely used for neutron measurement owing to its high neutron detection efficiency and simplicity for gamma-ray rejection. In general, the neutron and gamma-ray signals obtained from the $^3He$ proportional chamber can be easily separated by the difference in the pulse heights. However, for a high gamma-ray field, the gamma-ray signal cannot be precisely eliminated by the pulse height due to gamma-ray pulse pileup which causes the pulse height of gamma-ray pulse to increase and making the pulses due to neutrons and gamma rays indistinguishable. In this study, an improved algorithm for $n/{\gamma}$ discrimination using a parameter, which is the ratio of the rise time to the pulse height, is proposed. The $n/{\gamma}$ discrimination performance of the algorithm is evaluated by applying it to $^{252}Cf$ neutron signal separation from various gamma-ray exposure rate levels ranging 0.1-5 R/h. The performance is compared to that of the conventional pulse-height analysis method in terms of the gamma elimination ratio. The suggested algorithm shows better performance than the conventional one by 1.7% (at 0.1 R/h) to 70% (at 5 R/h) for gamma elimination.

Gamma-ray Dose Measurements in a Human Phantom Using Thermoluminescent Dosimeter

  • Yoo, Young-Soo;Lee, Hyun-Duk
    • Nuclear Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.239-247
    • /
    • 1974
  • 방사선 안전관리의 효과적인 연구를 위해 유사인체 모형을 설계, 제작하였다. 이 모형의 치수는 한국인의 체격과 근사하게 맞추었으며 두께 2.5cm인 포리에칠렌판 35매로 구성되었다. 유사인체모형의 표면에 착용한 열형광 설량계(Disc type TLD)로써 외부 ${\gamma}$-방사선에 의한 신체특정부위의 피폭선량을 측정하였으며, 아울러 깊이에 따른 흡수선량에 대해서 열형광 선량계(micro rod type TLD)로써 측정하여 결정장기 부위의 각단면에 대한 등가선량선을 얻었다. 선량측정은 방사선 작업자의 작업환경조건에 유사하도록 유사인체 모형에 대해 배치하고 여러 입사방항에 대해서 실시하였다. 그 결과 Cs-137, ${\gamma}$-방사선에 대하여 두께 20cm인 유사인체 모형에서의 감쇄는 0.439였으며 이는 보고된 자료들과 잘 일치하였다.

  • PDF

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code

  • Rammah, Y.S.;Mahmoud, K.A.;Mohammed, Faras Q.;Sayyed, M.I.;Tashlykov, O.L.;El-Mallawany, R.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2661-2668
    • /
    • 2021
  • Gamma radiation shielding features for three series of binary alloys identified as (Pb-Sn), (Pb-Zn), and (Zn-Sn) have been investigated. The mass attenuation coefficients (µ/ρ) for the selected alloys were simulated using the MCNP-5 code in the energy range between 0.01 and 15 MeV. Moreover, the (µ/ρ) values were computed using WinXCOM database in the same energy range to validate the simulation results. Results reveal a good agreement between the simulated and computed values. The half value layer (HVL), mean free path (MFP), effective atomic number (Zeff) and exposure buildup factor (EBF) were evaluated for the selected binary alloys. Results showed that the PS1, PZ1, and ZS2 alloys have the best shielding parameters and better than the commercially standard and available radiation shielding materials. Therefore, the investigated alloys can be used as effective radiation shielding materials against gamma ray with energies between 0.01 and 15 MeV.

Monitoring Method for an Ambient Gamma Exposure Rate and Its Measurement Analysis

  • Lee, Mo-Sung;Woo, Jong-Kwan
    • Journal of Radiation Protection and Research
    • /
    • 제31권4호
    • /
    • pp.197-201
    • /
    • 2006
  • Daily and seasonal variations of the ambient gamma ray exposure rates were measured by using a pressurized ion chamber from January 2003 to December 2005 in the CheongJu Regional Radiation Monitoring Post and the patterns of the distributions were studied. The annual average of the daily variation of the exposure rate was $\sim0.17{\mu}R/h$. The exposure rate was found to be maximum during 8:00 am to 9:00 am and minimum during 8:00 pm to 10:00 pm. For the annual data, the exposure rate was the minimum during the month of February. The exposure rate increased from February to mid-October (except during the period from May to July with no change) and decreased from October to February. The seasonal variation was found to be about $1{\mu}R/h$. Most of the measured values (96%) of the exposure rates fell under the normal distribution with a deviation of less than 4.8% and the remaining 4% had large fluctuations caused mainly by the rainfalls.

몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석 (An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine)

  • 장동근;강세식;김정훈;김창수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제38권4호
    • /
    • pp.477-482
    • /
    • 2015
  • 핵의학과에 근무하는 방사선작업종사자들은 방사성동위원소의 생산, 분배, 조제, 주입 등의 업무를 진행하며, 이러한 과정에서 손에 대한 방사선 피폭이 높게 발생한다. 이에 본 연구에서는 핵의학과에서 이용되는 방사성동위원소의 에너지로서 140 keV와 511 keV의 ${\gamma}$선에 대한 차폐효과를 몬테카를로 모의 모사를 통해 분석하였다. 모의실험 결과 140 keV ${\gamma}$선은 차폐체에 두께와 상관없이 모두 방사선에 대한 차폐효과가 발생되었으며, 511 keV의 ${\gamma}$선에서는 1.1 mm 이상에서 차폐효과가 발생되었다. 그러나 1.1 mm 미만에서는 2차적으로 발생된 산란선으로 인하여 차폐효과가 없었으며, 오히려 방사성동위원소의 피폭선량이 증가되었다. 따라서 효율적인 방사선 방어를 위해서는 핵종별 에너지에 따른 납 차폐체의 두께를 고려하여야 할 것이다.

Gamma-ray Exposure Rate Monitoring by Energy Spectra of NaI(Tl) Scintillation detectors

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • 제42권3호
    • /
    • pp.158-165
    • /
    • 2017
  • Background: Nuclear facilities in South Korea have generally adopted pressurized ion chambers to measure ambient gamma ray exposure rates for monitoring the impact of radiation on the surrounding environment. The rates assessed with pressurized ion chambers do not distinguish between natural and man-made radiation, so a further step is needed to identify the cause of abnormal variation. In contrast, using NaI(Tl) scintillation detectors to detect gamma energy rates can allow an immediate assessment of the cause of variation through an analysis of the energy spectra. Against this backdrop, this study was conducted to propose a more effective way to monitor ambient gamma exposure rates. Materials and Methods: The following methods were used to analyze gamma energy spectra measured from January to November 2016 with NaI detectors installed at the Korea Atomic Energy Research Institute (KAERI) dormitory and Hanbat University. 1) Correlations of the variation of rates measured at the two locations were determined. 2) The dates, intervals, duration, and weather conditions were identified when rates increased by $5nSv{\cdot}h^{-1}$ or more. 3) Differences in the NaI spectra on normal days and days where rates spiked by $5nSv{\cdot}h^{-1}$ or more were studied. 4) An algorithm was derived for automatically calculating the net variation of the rates. Results and Discussion: The rates measured at KAERI and Hanbat University, located 12 kilometers apart, did not show a strong correlation (coefficient of determination = 0.577). Time gaps between spikes in the rates and rainfall were factors that affected the correlation. The weather conditions on days where rates went up by $5nSv{\cdot}h^{-1}$ or more featured rainfall, snowfall, or overcast, as well as an increase in peaks of the gamma rays emitted from the radon decay products of $^{214}Pb$ and $^{214}Bi$ in the spectrum. This study assumed that $^{214}Pb$ and $^{214}Bi$ exist at a radioactive equilibrium, since both have relatively short half-lives of under 30 minutes. Provided that this assumption is true and that the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from the radionuclides have proportional count rates, no man-made radiation should be present between the two energy levels. This study proved that this assumption was true by demonstrating a linear correlation between the count rates of these two gamma peaks. In conclusion, if the count rates of these two peaks detected in the gamma energy spectrum at a certain time maintain the ratio measured at a normal time, such variation can be confirmed to be caused by natural radiation. Conclusion: This study confirmed that both $^{214}Pb$ and $^{214}Bi$ have relatively short half-lives of under 30 minutes, thereby existing in a radioactive equilibrium in the atmosphere. If the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from these radionuclides have proportional count rates, no man-made radiation should exist between the two energy levels.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Response Matrix에 의한 감마선(線) Spectrum 및 그 조사선량(照射線量) 해석(解析) (Analysis of Gamma-ray Spectrum and Assessment of Corresponding Exposure Rate by Means of Response Matrix Method)

  • 김성관;전재식
    • Journal of Radiation Protection and Research
    • /
    • 제11권1호
    • /
    • pp.3-14
    • /
    • 1986
  • $3'{\times}3'$ 원통형 NaI(T1) 검출기와 다중파고분석기(多重波高分析器)를 사용하여 측정한 $0.05{\sim}2.0MeV$ 구간의 ${\gamma}$선 spectrum에서 실(實)spctrum을 구하기 위하여 조사선량율(照射線量率)산출에 편리한 response matrix 방법을 사용하였다. Response mateix 구성에는, 위의 에네지 구간을 0.1 MeV의 등간격으로 나눈 $20{\times}20$ matrix로 한것과 검출기의 분해능이 입사 ${\gamma}$선 에너지의 평방근(平方根)에 의존한다는 가정하에 $0.1(MeV)^{1/2}$구간으로 나누어 $14{\times}14$ matrix로 구성한, 두가지 방법을 사용하였으며 그 역(逆)matrix들은 P-E 82/32 콤퓨터로 계산하였다. 이 방법으로 얻은 조사선량율은 에너지와 flux가 알려진 ${\gamma}$선량(陽)에 대하여 흔히 사용되는 계산방법으로 구한값과 10% 이내에서 일치하고 있으며, 선량측정학적(線量測定學的) 견지에서는 $E^{1/2}$ 구간으로 형성된 matrix가 등에너지간격으로 구성된 것보다 현실적인 것으로 판단되었다.

  • PDF