• Title/Summary/Keyword: Gamma-ray exposure

Search Result 96, Processing Time 0.019 seconds

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Study of n/γ discrimination using 3He proportional chamber in high gamma-ray fields

  • Choi, Joonbum;Park, Junesic;Son, Jaebum;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.263-268
    • /
    • 2019
  • The $^3He$ proportional chamber is widely used for neutron measurement owing to its high neutron detection efficiency and simplicity for gamma-ray rejection. In general, the neutron and gamma-ray signals obtained from the $^3He$ proportional chamber can be easily separated by the difference in the pulse heights. However, for a high gamma-ray field, the gamma-ray signal cannot be precisely eliminated by the pulse height due to gamma-ray pulse pileup which causes the pulse height of gamma-ray pulse to increase and making the pulses due to neutrons and gamma rays indistinguishable. In this study, an improved algorithm for $n/{\gamma}$ discrimination using a parameter, which is the ratio of the rise time to the pulse height, is proposed. The $n/{\gamma}$ discrimination performance of the algorithm is evaluated by applying it to $^{252}Cf$ neutron signal separation from various gamma-ray exposure rate levels ranging 0.1-5 R/h. The performance is compared to that of the conventional pulse-height analysis method in terms of the gamma elimination ratio. The suggested algorithm shows better performance than the conventional one by 1.7% (at 0.1 R/h) to 70% (at 5 R/h) for gamma elimination.

Gamma-ray Dose Measurements in a Human Phantom Using Thermoluminescent Dosimeter

  • Yoo, Young-Soo;Lee, Hyun-Duk
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.239-247
    • /
    • 1974
  • A human phantom of polyethylene has been designed and sculptured for studying the effective radiation safety control. The phantom has the approximate size of the Korean adult and was sliced into thirty-five transverse slabs, 2.5 cm thick, The relative dose at the specified position was determined from the exposure that a TLD badge worn on the surface of the phantom body received from external ${\gamma}$-ray. The variation of the exposure as a function of depth in the phantom was measured for uncollimated ${\gamma}$-ray using TLD rods, and also isodose curves were obtained for the anatomical cross-section of the critical organs of the body. To simulate radiation exposure condition in the nuclear facility, measurements were made for given angles of incident ${\gamma}$-ray. The front to back attenuation factor for human phantom of thickness 20 cm was 0.439 for Cs$^{137}$ ${\gamma}$-ray which is in reasonable agreement with the published data.

  • PDF

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code

  • Rammah, Y.S.;Mahmoud, K.A.;Mohammed, Faras Q.;Sayyed, M.I.;Tashlykov, O.L.;El-Mallawany, R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2661-2668
    • /
    • 2021
  • Gamma radiation shielding features for three series of binary alloys identified as (Pb-Sn), (Pb-Zn), and (Zn-Sn) have been investigated. The mass attenuation coefficients (µ/ρ) for the selected alloys were simulated using the MCNP-5 code in the energy range between 0.01 and 15 MeV. Moreover, the (µ/ρ) values were computed using WinXCOM database in the same energy range to validate the simulation results. Results reveal a good agreement between the simulated and computed values. The half value layer (HVL), mean free path (MFP), effective atomic number (Zeff) and exposure buildup factor (EBF) were evaluated for the selected binary alloys. Results showed that the PS1, PZ1, and ZS2 alloys have the best shielding parameters and better than the commercially standard and available radiation shielding materials. Therefore, the investigated alloys can be used as effective radiation shielding materials against gamma ray with energies between 0.01 and 15 MeV.

Monitoring Method for an Ambient Gamma Exposure Rate and Its Measurement Analysis

  • Lee, Mo-Sung;Woo, Jong-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.197-201
    • /
    • 2006
  • Daily and seasonal variations of the ambient gamma ray exposure rates were measured by using a pressurized ion chamber from January 2003 to December 2005 in the CheongJu Regional Radiation Monitoring Post and the patterns of the distributions were studied. The annual average of the daily variation of the exposure rate was $\sim0.17{\mu}R/h$. The exposure rate was found to be maximum during 8:00 am to 9:00 am and minimum during 8:00 pm to 10:00 pm. For the annual data, the exposure rate was the minimum during the month of February. The exposure rate increased from February to mid-October (except during the period from May to July with no change) and decreased from October to February. The seasonal variation was found to be about $1{\mu}R/h$. Most of the measured values (96%) of the exposure rates fell under the normal distribution with a deviation of less than 4.8% and the remaining 4% had large fluctuations caused mainly by the rainfalls.

An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine (몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Junghoon;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • Workers in nuclear medicine have performed various tasks such as production, distribution, preparation and injection of radioisotope. This process could cause high radiation exposure to wokers' hand. The purpose of this study was to investigate shielding effect for r-rays of 140 and 511 keV by using Monte-carlo simulation. As a result, it was effective, regardless of lead thickness for radiation shielding in 140 keV r-ray. However, it was effective in shielding material with thickness of more than only 1.1 mm in 511keV r-ray. And also it doesn't effective in less than 1.1 mm due to secondary scatter ray and exposure dose was rather increased. Consequently, energy of radionuclide and thickness of shielding materials should be considered to reduce radiation exposure.

Gamma-ray Exposure Rate Monitoring by Energy Spectra of NaI(Tl) Scintillation detectors

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.158-165
    • /
    • 2017
  • Background: Nuclear facilities in South Korea have generally adopted pressurized ion chambers to measure ambient gamma ray exposure rates for monitoring the impact of radiation on the surrounding environment. The rates assessed with pressurized ion chambers do not distinguish between natural and man-made radiation, so a further step is needed to identify the cause of abnormal variation. In contrast, using NaI(Tl) scintillation detectors to detect gamma energy rates can allow an immediate assessment of the cause of variation through an analysis of the energy spectra. Against this backdrop, this study was conducted to propose a more effective way to monitor ambient gamma exposure rates. Materials and Methods: The following methods were used to analyze gamma energy spectra measured from January to November 2016 with NaI detectors installed at the Korea Atomic Energy Research Institute (KAERI) dormitory and Hanbat University. 1) Correlations of the variation of rates measured at the two locations were determined. 2) The dates, intervals, duration, and weather conditions were identified when rates increased by $5nSv{\cdot}h^{-1}$ or more. 3) Differences in the NaI spectra on normal days and days where rates spiked by $5nSv{\cdot}h^{-1}$ or more were studied. 4) An algorithm was derived for automatically calculating the net variation of the rates. Results and Discussion: The rates measured at KAERI and Hanbat University, located 12 kilometers apart, did not show a strong correlation (coefficient of determination = 0.577). Time gaps between spikes in the rates and rainfall were factors that affected the correlation. The weather conditions on days where rates went up by $5nSv{\cdot}h^{-1}$ or more featured rainfall, snowfall, or overcast, as well as an increase in peaks of the gamma rays emitted from the radon decay products of $^{214}Pb$ and $^{214}Bi$ in the spectrum. This study assumed that $^{214}Pb$ and $^{214}Bi$ exist at a radioactive equilibrium, since both have relatively short half-lives of under 30 minutes. Provided that this assumption is true and that the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from the radionuclides have proportional count rates, no man-made radiation should be present between the two energy levels. This study proved that this assumption was true by demonstrating a linear correlation between the count rates of these two gamma peaks. In conclusion, if the count rates of these two peaks detected in the gamma energy spectrum at a certain time maintain the ratio measured at a normal time, such variation can be confirmed to be caused by natural radiation. Conclusion: This study confirmed that both $^{214}Pb$ and $^{214}Bi$ have relatively short half-lives of under 30 minutes, thereby existing in a radioactive equilibrium in the atmosphere. If the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from these radionuclides have proportional count rates, no man-made radiation should exist between the two energy levels.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Analysis of Gamma-ray Spectrum and Assessment of Corresponding Exposure Rate by Means of Response Matrix Method (Response Matrix에 의한 감마선(線) Spectrum 및 그 조사선량(照射線量) 해석(解析))

  • Kim, Seong-Kwan;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.3-14
    • /
    • 1986
  • A stud has been carried out for figuring out real photon spectrum from an observed gamma-ray spectrum by means of response matrix method, which is known one of the relatively convenient method for the estimation of exposure rate of a complex gamma ray field in comparison with graphical analysis and least square fitting of the measured spectrum. A 3'${\times}$3' cylindrical Nal(T1) scintillation detector in association with multichannel pulse height analyzer and six reference gamma ray sources covering the photon energy range of 0.05 to 2.0 MeV were used. In dividing the energy region for the construction of response matrix, two different approaches were attempted. One is dividing the entire energy region of interest into 20 bins, one of which corresponds to a width of 0.1 MeV to form $20{\times}20$ matrix, and another is dividing the 2 MeV region into 14 bins to form $14{\times}14$ matrix consists of $0.1(MeV)^{1/2}$ intervals assuming the resolution of the detector is dependent on square root of the incident photon energy. Inversion of thus constructed matrices was performed by a computor(P-E8/32) using the program attached to the end of this paper. The resultant exposure rates obtained by this method were in good agreement, within 10% with those calculated by ordinary formula widely used for a gamma-ray field of known energy and flux. It is concluded that the photen flux obtained by the response matrix constructed under the assumption of $E^{1/2}$ dependence is more realistic than that obtained by the matrix consist of identical energy bins in dosimetrical point of view.

  • PDF