• Title/Summary/Keyword: Gamma-$C_2S$

Search Result 731, Processing Time 0.033 seconds

Fabrication of $Al_2O_3$/SiC Hybrid-Composite ($Al_2O_3$/SiC Hybrid-Composite의 제조)

  • Lee, Su-Yeong;Im, Gyeong-Ho;Jeon, Byeong-Se
    • 연구논문집
    • /
    • s.26
    • /
    • pp.103-112
    • /
    • 1996
  • $Al_2O_3/SiC$ Hybrid-Composite has been fabricated by conventional powder process. The addition of $\alpha-Al_2O_3$ as seed particles in the transformation of $\gamma-Al_2O_3 to $\alpha-Al_2O_3$ provided a homogeneity of the microstructure, resulting in increase of mechanical properties. The grain growth of $Al_2O_3$ are significantly surpressed by the addition of nano-sized. SiC particles, increasing in fracture strength. The addition of SiC plates to $Al_2O_3$ nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC plates with nitrides such as BN and /SiC$Si_3N_4$ enhanced fracture toughness much more than uncoated SiC plates by inducing crack deflection.

  • PDF

The Application of New Calibrator[I-125]Set for Equipment Quality Management (장비정도관리에 Calibrator[I-125] Set 적용)

  • Kim, Ji-Na;An, Jae-seok;Won, Woo-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.108-111
    • /
    • 2015
  • Purpose Lately, in accordance with the increasing interest about Healthcare accreditation program and International laboratory accreditation scheme, requirements about the instrument quality management are gradually taking shape. In nuclear medicine In vitro laboratory, the most typical instruments are multi detector gamma counter and automatic dispensing system. Each laboratory continue with the quality control adequate for circumstances. The purpose of this study is to application and establish the new Calibrator[I-125]Set which is efficient at standardization of equipment quality management. Materials and Methods Deviation between detectors were measured with 12 solid samples of the Calibrator[I-125]Set. their activities differ from each other by less than 1%. Multi detector gamma counters are GAMMA-10;Shinjin medics. Inc, Goyansi, Korea(Gamma counter A), SR300;Stratec biomedical systems AG, Gewerbestr, Germany(Gamma counter B) and COBRA II; Packard Instrument Co. Inc, Meriden, USA(Gamma counter C). Evaluation of two automatic dispensing system used A, B liquid tracer of the Calibrator[I-125]Set. After dispensing and counting, calculated using the ratio of the measured value and proposed value. We used solution A for 20, 25ul and solution B for 50, 100ul. Method of data analysis and reference range was provided by kit documentation. Furthermore, we could calculate our counter efficiency indirectly. Results The CV(%) of measured values by Gamma counter A, B, C are 0.34, 0.70, 1.30. Calculated value are 1.05314, 2.10419, 4.08485. Provided reference range is less than 3. A dispensing system's calculated values are 0.986, 0.989, 1.023, 1.017 and B are 0.874, 0.725, 1.021, 0.904. Provided reference range is from 0.95 to 1.05. Also, counter's efficiency are 74.18, 72.79, 74.32% at counter A, B, C and efficiency of the one detector counter is 79.26%. Conclusion If using this Calibrator[I-125]Set after verifying whether quality assurance, is applicable to equipment quality management on behalf of the role of gold standard.

  • PDF

Draft Prediction of Bulldozer Blade by Model Tests (모델 테스트에 의한 Bulldozer Blade의 견인력(牽引力) 예측(豫測))

  • Lee, K.S.;Roh, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.209-219
    • /
    • 1993
  • A series of soil bin experiment was carried out on sand to investigate if true model theory is applicable to blade-soil system and finally to find mathematical relationship between the dimensionless terms which contain the blade-soil parameters. The following conclusions were derived from the study. 1. It was proved that the draft of the prototype blade can be predicted without distortion by those of model blades with the length scale of 1.2, 2 and 2.4. 2. For the sand, bulk density was found to be a good measure of soil physical properties which are pertinent to predict the draft of the blade-soil system. 3. The mathematical relationship between $D/{\gamma}W$ and d/W, ${\beta}$, and $V^2/Wg$ are as follows ; $$\frac{D}{{\gamma}W^3}=124.98[\frac{d}{W}]^2+7.16[\frac{d}{W}]+0.43 \\ \frac{D}{{\gamma}W^3}=-0.00099{\beta}^2+0.13{\beta}-2.01 \\ \frac{D}{{\gamma}W^3}=0.041[\frac{V^2}{Wg}]^2+0.08[\frac{V^2}{Wg}]+1.3$$

  • PDF

A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres (저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구)

  • Shin, P.W.;Lee, K.H.;Nam, K.S.;Park, Y.M.;Jo, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

Effect of lonizing Radiation on the Host Resistance Against Listeria Monocytogenes Infection and the Cytokine Production in Mice (방사선조사후 마우스에서의 Cytokine 생산능 및 Listeria monecytogenes에 대한 저항성의 변화)

  • Oh, Yoon-Kyeong;Chang, Mee-Young;Kang, In-Chol;Oh, Jong-Suk;Lee, Hyun-Chul
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 1997
  • Purpose : To evaluate the qualitative immunologic changes by ionizing radiation. we studied the altered capacities of the macrophages and lymphocytes to produce cytokines in conjunction with resistance to Listeria monocytegenes (LM) infection in mice Materials and Methods : BALB/c mice and Listeria monocytogenes were used. The mice were infected intraperitoneally with $10^5LM$ at 1 day after irradiation (300cGy) and sacrificed at 1, 3, 5 days after infection, and then the numbers of viable LM per spleen in the irradiated and control group were counted. Tumor necrosis factor-alpha ($TNF-\alpha$), interferon-gamma ($IFN-\gamma$). interleukin-2 (IL-2), and nitric oxide (NO) were assessed after irradiation. Results : Under gamma-ray irradiation with a dose range of 100-850cGy, the number of total splenocytes decreased markedly in a dose-dependent manner, while peritoneal macrophages did so slightly Cultured peritoneal macrophages produced more $TNF-\alpha$ in the presence of lipopolysaccharide (LPS) during the 24 hours after in vitro irradiation, but their capacity of $TNF-\alpha$ Production showed a decreased tendency at 5 days after in vivo total body irradiation. With 100cGy and 300cGy irradiation, cultured peritoneal macrophages produced more NO in the presence of LPS during the 24 hours after in vitro irradiation than without irradiation. Activated splenocytes from irradiated mice (300cGy) exhibited a decreased capacity to Produce IL-2 and $IFN-\gamma$ with Concavalin-A stimulation at 3 days after irradiation. When BALB/c mice were irradiated to the total body with a dose of 300cGy, they showed enhanced resistance during early innate phase, but a significant inhibition of resistance to LM was found in the late innate and acquired T-cell dependent phases. Conclusion : These results su99es1 that increased early innate and decreased late innate and acquired immunity to LM infection by ionizing radiation (300cGy) may be related to the biphasic altered capacity of the macrophages to produce $TNF-\alpha$ and the decreased capacities of the lymphocytes to produce IL-2 and $IFN-\gamma$ in addition to a marked decrease in the total number of cells.

  • PDF

(γ-Aminobutyric Acid Transporter 2 Binds to the PDZ Domain of Mammalian Lin-7 ((γ-Aminobutyric acid transporter 2와 mammalian Lin-7의 PDZ결합)

  • Seog, Dae-Hyun;Moon, II-Soo
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.940-946
    • /
    • 2008
  • Neurotransmitter transporters, which remove neurotransmittesr from the synaptic cleft, are regulated by second messenger such as protein kinases and binding proteins. Neuronal ${\gamma}-aminobutyric$ acid transporters (GATs) are responsible for removing the inhibitory neurotransmitter ${\gamma}-aminobutyric$ acid (GABA) from the synaptic cleft. ${\gamma}-aminobutyric$ acid transporters 2 (GAT2/BGT1) is involved in regulating neurotransmitter recycling, but the mechanism how they are stabilized and regulated by the specific binding protein has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the C-terminal region of GAT2 and found a specific interaction with the mammalian LIN-7b (MALS-2). MALS-2 protein bound to the tail region of GAT2 but not to other GAT members in the yeast two-hybrid assay. The "T-X-L" motif at the C-terminal end of GAT2 is essential for interaction with MALS-2. In addition, this protein showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT2 specifically co-immunoprecipitated MALS associated with GAT2 from mouse brain extracts. These results suggest that MALS may stabilize GAT2 in brain.

Impact of gamma radiation on 8051 microcontroller performance

  • Charu Sharma;Puspalata Rajesh;R.P. Behera;S. Amirthapandian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4422-4430
    • /
    • 2022
  • Studying the effects of gamma radiation on the instrumentation and control (I&C) system of a nuclear power plant is critical to the successful and reliable operation of the plant. In the accidental scenario, the adverse environment of ionizing radiation affects the performance of the I&C system and it leads to inaccurate and incomprehensible results. This paper reports the effects of gamma radiation on the AT89C51RD2, a commercial-off-the-shelf 8-bit high-performance flash microcontroller. The microcontroller, selected for the device under test for this study is used in the remote terminal unit for a nuclear power plant. The custom circuits were made to test the microcontroller under different gamma doses using a 60Co gamma source in both ex-situ and in-situ modes. The device was exposed to a maximum dose of 1.5 kGy. Under this hostile environment, the performance of the microcontroller was studied in terms of device current and voltage changes. It was observed that the microcontroller device can operate up to a total absorbed dose of approximately 0.6 kGy without any failure or degradation in its performance.

Characterization of rapidly consolidated γ-TiAl

  • Kothari, Kunal;Radhakrishnan, Ramachandran;Sudarshan, Tirumalai S.;Wereley, Norman M.
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2012
  • A powder metallurgy-based rapid consolidation technique, Plasma Pressure Compaction ($P^2C^{(R)}$), was utilized to produce near-net shape parts of gamma titanium aluminides (${\gamma}$-TiAl). Micron-sized ${\gamma}$-TiAl powders, composed of Ti-50%Al and Ti-48%Al-2%Cr-2%Nb (at%), were rapidly consolidated to form near-net shape ${\gamma}$-TiAl parts in the form of 1.0" (25.4 mm) diameter discs, as well as $3"{\times}2.25"$ ($76.2mm{\times}57.2mm$) tiles, having a thickness of 0.25" (6.35 mm). The ${\gamma}$-TiAl parts were consolidated to near theoretical density. The microstructural morphology of the consolidated parts was found to vary with consolidation conditions. Mechanical properties exhibited a strong dependence on microstructural morphology and grain size. Because of the rapid consolidation process used here, grain growth during consolidation was minimal, which in turn led to enhanced mechanical properties. Consolidated ${\gamma}$-TiAl samples corresponding to Ti-48%Al-2%Cr-2%Nb composition with a duplex microstructure (with an average grain size of $5{\mu}m$) exhibited superior mechanical properties. Flexural strength, ductility, elastic modulus and fracture toughness for these samples were as high as 1238 MPa, 2.3%, 154.58 GPa and 17.95 MPa $m^{1/2}$, respectively. The high temperature mechanical properties of the consolidated ${\gamma}$-TiAl samples were characterized in air and vacuum and were found to retain flexural strength and elastic modulus for temperatures up to $700^{\circ}C$. At high temperatures, the flexural strength of ${\gamma}$-TiAl samples with Ti-50%Al composition deteriorated in air by 10% as compared to that in vacuum. ${\gamma}$-TiAl samples with Ti-48%Al-2%Nb-2%Cr composition exhibited better if not equal flexural strength in air than in vacuum at high temperatures.

Microbial Tansformatin of $\gamma$-Butyrobetaine into L-Carnitine by Achromobacter cylcoclast (Achromobacter cycloclast에 의한 $\gamma$-Butyrobetaine의 L-Carnitine에로의 생물전환)

  • 이은구;이인영;박영훈
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.205-211
    • /
    • 1999
  • We investigated optimal conditions for the microbial transformation of $\gamma$-butyrobetaine into L-carnitine by using Achromobacter cycloclast ATCC 21921. When the cells were cultivated in the medium containing $\gamma$-butyrobetaine as the sole carbon source for both cell growth and L-carnitine production, the maximum L-carnitine production was 2.9 g/L and the conversion yield from $\gamma$-butyrobetaine to L-carnitine was as low as 30.9 mol%. In order to enhance the L-carnitine production and the conversion yield, various carbon sources were added to the $\gamma$-butyronetaine containing basal medium. In the medium supplemented with glycerol, L-carnitine production was as high as 4.6 g/L and the conversion yield was 88.2 mol%, showing a significant improvement in L-carnitine synthesis compared to those in the medium without glycerol. We also examined the additional effect of quaternary ammonium compounds such as betaine and choline, which are similar in structure to $\gamma$-butyrobetaine and L-carnitien. It was observed that in the presence of those quaternary ammonium compounds, both the L-carnitine production rate and the conversion yield increased. In addition, we found that cell growth was inhibited by a $\gamma$-butyrobetaine concentration of more than 3%, while L-carnitine production was efficient at the $\gamma$-butyrobetaine concentration of 2-3%. By cultivating the cells in the optimal medium containing glycerol and choline, we obtained an L-carnitine concentration of 7.2 g/L with the conversion yield of 98.7 mol% in 4 days.

  • PDF

Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding (고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향)

  • Kim, J.M.;Hyun, Y.K.;Song, S.W.;Kim, G.D.;Son, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.