DOI QR코드

DOI QR Code

Characterization of rapidly consolidated γ-TiAl

  • Kothari, Kunal (Composites Research Laboratory, Department of Aerospace Engineering, University of Maryland) ;
  • Radhakrishnan, Ramachandran (Composites Research Laboratory, Department of Aerospace Engineering, University of Maryland) ;
  • Sudarshan, Tirumalai S. (Materials Modification Inc.) ;
  • Wereley, Norman M. (Composites Research Laboratory, Department of Aerospace Engineering, University of Maryland)
  • Received : 2011.06.29
  • Accepted : 2012.02.29
  • Published : 2012.03.25

Abstract

A powder metallurgy-based rapid consolidation technique, Plasma Pressure Compaction ($P^2C^{(R)}$), was utilized to produce near-net shape parts of gamma titanium aluminides (${\gamma}$-TiAl). Micron-sized ${\gamma}$-TiAl powders, composed of Ti-50%Al and Ti-48%Al-2%Cr-2%Nb (at%), were rapidly consolidated to form near-net shape ${\gamma}$-TiAl parts in the form of 1.0" (25.4 mm) diameter discs, as well as $3"{\times}2.25"$ ($76.2mm{\times}57.2mm$) tiles, having a thickness of 0.25" (6.35 mm). The ${\gamma}$-TiAl parts were consolidated to near theoretical density. The microstructural morphology of the consolidated parts was found to vary with consolidation conditions. Mechanical properties exhibited a strong dependence on microstructural morphology and grain size. Because of the rapid consolidation process used here, grain growth during consolidation was minimal, which in turn led to enhanced mechanical properties. Consolidated ${\gamma}$-TiAl samples corresponding to Ti-48%Al-2%Cr-2%Nb composition with a duplex microstructure (with an average grain size of $5{\mu}m$) exhibited superior mechanical properties. Flexural strength, ductility, elastic modulus and fracture toughness for these samples were as high as 1238 MPa, 2.3%, 154.58 GPa and 17.95 MPa $m^{1/2}$, respectively. The high temperature mechanical properties of the consolidated ${\gamma}$-TiAl samples were characterized in air and vacuum and were found to retain flexural strength and elastic modulus for temperatures up to $700^{\circ}C$. At high temperatures, the flexural strength of ${\gamma}$-TiAl samples with Ti-50%Al composition deteriorated in air by 10% as compared to that in vacuum. ${\gamma}$-TiAl samples with Ti-48%Al-2%Nb-2%Cr composition exhibited better if not equal flexural strength in air than in vacuum at high temperatures.

Keywords

References

  1. Adams, L., Kampe, S. and Christodoulou, L. (1990), "Characterization of rapidly solidified ceramic-titanium aluminide powders", Int. J. Powder Metall., 26(2), 105-114.
  2. Appel, F., Oehring, M. and Wagner, R. (2000), "Novel design concepts for gamma-based titanium alumnide alloys", Intermetallics, 8(9-11), 1283-1312. https://doi.org/10.1016/S0966-9795(00)00036-4
  3. ASTM, (1997), Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA.
  4. Cerreta, E. and Mahajan, S. (2001), "Formation of deformation twins in TiAl", Acta Mater., 49(18), 3803-3809. https://doi.org/10.1016/S1359-6454(01)00264-6
  5. Cheng, T. and McLean, M. (1997), "Characterization of TiAl intermetallic rods produced from elemental powders by hot extrusion reaction synthesis (HERS)", J. Mater. Sci., 32(23), 6255-6261. https://doi.org/10.1023/A:1018689111498
  6. Chen, Y.Y., Yua, H.B., Zhang, D.L. and Chaia L.H. (2009), "Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy", Mater. Sci. Eng.: A., 525, 166-173. https://doi.org/10.1016/j.msea.2009.06.056
  7. Christop, U., Appel, F. and Wagner, R. (1997), "High-temperature ordered intermetallic alloys VII", Mater. Res. Sot. Symp. Proc., Pittsburgh, 460, 207-212.
  8. Das, G., Kestler, H. Clemens, H., and Bartolotta, P.A. (2004), "Sheet gamma TiAl: status and opportunities", J. Mater., 56(11), 42-45.
  9. Djanarthany, S., Viala, J.C. and Bouix, J. (2001), "An overview of monolithic titanium aluminides based on $Ti_3Al$ and TiAl", Mater. Chem. Phys., 72(3), 301-319. https://doi.org/10.1016/S0254-0584(01)00328-5
  10. Draper, L.S. Das, G. Locci, I. Whittenberger, J.D. Lerch, B.A. and Kestler, H. (Ed.) (2003), Gamma Titanium Aluminides, Kim, Y.W. Helmut, C. and Rosenberger, A.H., TMS, PA.
  11. Froes, F.H., Suryanarayana, C. and Eliezer, D. (1992), "Review synthesis, properties and applications of titanium aluminides", J. Mater. Sci., 27(19), 5113-5140. https://doi.org/10.1007/BF02403806
  12. Froes, F.H. and Suryanarayana, C. (1995), Phys. Metal. Process. Intermetallics Compounds. Chapman and Hall, NY.
  13. Fu, E., Rawlings, R.D. and McShane, H.B. (2001), "Reaction synthesis of titanium aluminides", J. Mater. Sci., 36(23), 5537-5542. https://doi.org/10.1023/A:1012540927009
  14. Gerling, R., Bartels, A. and Clemens, H. (2004), "Structural characterization and tensile properties of a high Nb containing gamma TiAl sheet obtained by powder metallurgical processing", Intermetallics, 12(3), 275-280. https://doi.org/10.1016/j.intermet.2003.10.005
  15. Hibbeler, R.C. (1997), Mech. Mater. 3rd Edition, Prentice Hall, Upper Saddle River, NJ.
  16. Hitoshi, H. and Sun, Z. (2003), "Fabrication of TiAl alloys by MA-PDS process and the mechanical properties", Intermetallics, 11(8), 825-834. https://doi.org/10.1016/S0966-9795(03)00081-5
  17. Immarigeon, J.P., Holt, R.T., Koul, A.K., Zhao, L., Wallace, L. and Beddoes, J.C. (1995), "Lightweight materials for aircraft applications", Mater. Charect., 35(1), 41-67. https://doi.org/10.1016/1044-5803(95)00066-6
  18. Kim, Y.W. (1989), "Intermetallic alloys based on gamma titanium aluminides", J. Mater., 41(7), 24-30.
  19. Kim, Y.W. (1991), "Microstructural evolution and mechanical properties of a forged gamma titanium alloy", Acta Metall. Mater., 40(6), 1121-1133.
  20. Kim, Y.W. (1995), "Effects of microstructure on the deformation and fracture of gamma-TiAl alloys", Mater. Sci. Eng., A192/193, 519-533.
  21. Kim, Y.W. (1998), "Strength and ductility in TiAl alloys", Intermetallics, 6(7-8), 623-628. https://doi.org/10.1016/S0966-9795(98)00037-5
  22. Kim, Y.W. and Dimiduk, D. (1991), "Progress in the understanding of gamma titanium aluminides", JOM, 43(8), 40-47. https://doi.org/10.1007/BF03221103
  23. Krause, P., Bartolotta, A. and David, L. (1999), "Titanium aluminide applications in the high speed civil transport", Proceedings of International Symposium on Gamma Titanium Aluminides, CA, USA.
  24. Lipsitt, H.A. (1975), "The deformation and fracture of TiAl at elevated temperatures", Metall. Mater. Trans. A, 6(11), 1991-1996. https://doi.org/10.1007/BF03161822
  25. Lu, X., He, X.B., Zhang, B., Zhang, L., Qu, X.H. and Guo, Z.X. (2009), "Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy", Intermetallics, 17(10), 840-846. https://doi.org/10.1016/j.intermet.2009.03.013
  26. Marketz, W.T., Fischer, F.D., Kauffmann, F., Dehm, G., Bidlingmaier, T., Wanner, A. and Clemens, H. (2002), "On the role of twinning during room temperature deformation of gamma-TiAl based alloys", Mater. Sci. Eng., 331, 177-183.
  27. Prasad, U. and Chaturvedi, M.C. (2004), "Grain coarsening in Ti-45Al based titanium aluminides at supertransus temperature and subsequent lamellar structure formation", Mater. Sci. Tech., 20(1), 87-92. https://doi.org/10.1179/174328413X13789824293740
  28. Rivard, J. (2005), "Development of a finite volume model for the high-density infrared processing of gamma-TiAl thin-gage sheet", PhD Thesis, University of Cincinnati, Cincinnati, OH.
  29. Sahay, S.S., Ravichandran, K.S., Atri, R., Chen, B. and Rubin, J. (1999), "Evolution of microstructure and phases in in-situ processed Ti-TiB composites containing high volume fractions of TiB whiskers", J. Mater. Res., 14(11), 4214-4221. https://doi.org/10.1557/JMR.1999.0571
  30. Sauthoff, G. (1995), Intermetallics, Wiley-VCH, Weinheim, New York.
  31. Schafrik, R.E. (1977), "Dynamic elastic moduli of titanium aluminides", Metall. Trans. A., 8(6), 1003-1006. https://doi.org/10.1007/BF02661586
  32. Shazly, M., Prakash, V. and Draper, S. (2009), "Dynamic fracture initiation toughness of a gamma (Met-PX) titanium aluminide at elevated temperatures", Metall. Mater. Trans. A., 40(6), 1400-1412. https://doi.org/10.1007/s11661-009-9823-3
  33. Simpkins, R., Rourke, M., Bieler, T. and McQuay, P.A. (2007), "The effects of HIP pore closure and age hardening on primary creep and tensile property variations in a TiAl $XD^{TM}$XDTM alloy with 0.1 wt.% carbon", Mater. Sci. Eng., 463(1-2), 208-215. https://doi.org/10.1016/j.msea.2006.09.114
  34. Soboyejo, W.O., Ye, F. and Srivatsan, T.S. (1997), "The fatigue and fracture behavior of a gamma-titanium alumnide intermtallic: Influence of ductile phase reinforcement", Eng. Fract. Mech., 56(3), 379-395. https://doi.org/10.1016/S0013-7944(96)00101-4
  35. Soboyejo, W.O., Shen, W., Lou, J., Mercer, C., Sinha, V. and Soboyejo, A.B.O. (2004), "Probabilistic framework for the modeling of fatigue in cast lamellar gamma-based titanium aluminides", Mech. Mater., 36(1-2), 177-197. https://doi.org/10.1016/S0167-6636(03)00038-3
  36. Sommer, A.W. and Keijzers, G.C. (Ed.) (2003), Gamma Titanium Aluminides, Y.W. Kim, H. Clemens and A.H. Rosenberger, TMS, PA.
  37. Srivatsan, T.S., Soboyejo, W.O. and Strangwood, M. (1995). "Cyclic fatigue and fracture behavior of a gamma-titanium aluminide intermetallic", Eng. Fract. Mech., 52(1), 107-120. https://doi.org/10.1016/0013-7944(94)00330-K
  38. Sun, Y.Q. (1999). Gamma Titanium Aluminides. [Edition] Kim, Y.W., TMS, PA.
  39. Sun, Z. and Hashimoto, H. (2003), "Fabrication of TiAl alloys by MA-PDS process and the mechanical properties", Intermetallics, 11(8), 823-834.
  40. Szewczak, E., Paszula, J., Leonov, A.V. and Matyja, H. (1997), "Explosive consolidation of mechanically alloyed Ti-Al alloys", Mater. Sci. Eng. A., 226/228(15), 115-118. https://doi.org/10.1016/S0921-5093(97)80030-5
  41. Voice, W. (1999), "The future of gamma-titanium alumnides by rolls royce", Aircr. Eng. Aerosp. Tech., 71(4), 337-340. https://doi.org/10.1108/00022669910371031
  42. Voice, W., Henderson, M., Shelton, E. and Wu, X. (2005), "Gamma titanium aluminide, TNB", Intermetallics, 13(9), 959-964. https://doi.org/10.1016/j.intermet.2004.12.021
  43. Woo, J.C., Varma, S.K. and Mahapatra, R.N. (2003), "Oxidation behavior and transmission electron microscope characterization of Ti-44Al-xNb-2(Ta,Zr) alloys", Metall. Mater. Trans. A, 34(10), 2263-2271. https://doi.org/10.1007/s11661-003-0290-y
  44. Yolton, C.F. Kim, Y.W. and Habel, U. (Ed.) (2003), Gamma Titanium Aluminides, Kim, Y.W., Helmut, C. and Rosenberger, A.H., TMS, PA.
  45. Zhang, W., Liu, Y., Liu, B. and Huang, B.Y. (2011), "Comparative assessment of microstructure and compressive behaviours of PM TiAl alloy prepared by HIP and Pseudo-HIP technology", Powder Metall., 54(2), 133-141.

Cited by

  1. Mechanical properties of Al/Al2O3and Al/B4C composites vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.263
  2. Porous γ-TiAl Structures Fabricated by Electron Beam Melting Process vol.6, pp.12, 2016, https://doi.org/10.3390/met6010025
  3. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting vol.10, pp.2, 2017, https://doi.org/10.3390/ma10020211