• Title/Summary/Keyword: Gamma spectra

Search Result 259, Processing Time 0.024 seconds

An ESR Study of Amino Acid and Protein Free Radicals in Solution. Part IV. An ESR study of Gamma-Irradiated Amino Acids in Frozen Aqueous Solutions.

  • Sun-Joo Hong;D. E. Holmes;L. H. Piette.
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.256-265
    • /
    • 1971
  • An ESR study has been made on free radicals produced in frozen aqueous solutions (ices) of glycine, DL-${\alpha}$-alanine, DL-serine, L-cysteine, DL-leucine and DL-isoleucine by gamma-irradiation at dry ice temperature. All free radicals induced were decayed concomitant to the successive annealing but the radical species which is believed to be dominant seems to be stable even near the melting point of the ice. These dominant species were found to be identical to those resulted from direct action of radiation in the solid at room temperature. Small but significant changes in the spectra of glycine and DL-${\alpha}$-alanine were observed by varying the microwave power. These results seem to support the view that the spectra obtained were composite consisting of more than two different resonances having different power saturation characteristics. The relative contribution of unidentified resonances to the composite spectra was greater for solutions of low concentration. These resonances are assumed to be induced by indirect effects, mainly hydrogen abstraction by radiation produced hydroxyl radicals and also C-N bond cleavage by hydrated electrons.

  • PDF

EXPERIMENTAL VALIDATION OF THE BACKSCATTERING GAMMA-RAY SPECTRA WITH THE MONTE CARLO CODE

  • Hoang, Sy Minh Tuan;Yoo, Sang-Ho;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • In this study, simulations were done of a 661.6 keV line from a point source of $^{137}Cs$ housed in a lead shield. When increasing the scattering angle from 60 to 120 degrees with a 6061 aluminum alloy target placed at angles of 30 and 45 degrees to the incident beam, the spectra showed that the single scattering component increases and that the multiple scattering component decreases. The investigation of the single and multiple scattering components was carried out using a MCNP5 simulation code. The component of the single Compton scattering photons is proportional to the target electron density at the point where the scattering occurs. The single scattering peak increases according to the thickness of the target and saturates at a certain thickness. The signal-to-noise ratio was found to decrease according to the target thickness. The simulation was experimentally validated by measurements. These results will be used to determine the best conditions under which this method can be applied to testing electron densities or to assess the thickness of samples to locate defects in them.

An Analysis of ${\gamma}-ray$ Energy Spectra Using the NaI(T1) Scintillation Detector in the Air and Water (NaI(T1) 섬광검출기를 이용한 공기 및 수중에서의 감마선 에너지스펙트럼 분석)

  • Kim, Eun-Sug;Park, Jae-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 1996
  • The energy spectra in the air and water of several ${\gamma}-ray$ sources such as Cr-51, Cs-137, Mn-54, Zn-65 have been investigated using the NaI(T1) scintillation detector. General response functions, which can curve fit the measured spectra, have been constructed. We have found that the constructed response functions can successfully represent the measured spectra in the water as well as in the air, It is possible, by comparing the relevant parameters of the response functions, to quantitatively characterize the changing features of the measured spectra as obtained with varying the water depth. Of the response function parameters, those which affect the shape of the full-energy Peak have most notably changed. Besides, those parameters which affect the shapes of the flat continuum, the Compton continuum and edge have also shown slight changes with varying the water depth.

  • PDF

Examining Synchronous Fluorescence Spectra of Dissolved Organic Matter for River BOD Prediction (하천수 BOD 예측을 위한 용존 자연유기물질의 synchronous 형광 스펙트럼 분석)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 2007
  • Fluorescence measurements of dissolved organic matter (DOM) have the superior advantages over other analysis tools for the applications to water quality management due to their rapid analysis. It is known that protein-like fluorescence characteristics are well corelated with microbial activities and biodegradable organic matter. In this study, potential biochemical oxygen demand (BOD) predictor were explored using the fluorescence peak intensities and/or the integrated fluorescence intensities derived from synchronous fluorescence spectra and the first derivative spectra of river samples. A preliminary study was conducted using a mixture of a river and a treated sewage to test the feasibility of the approach. It was demonstrated that the better BOD predictor can be derived from synchronous fluorescence spectra and the derivatives when the difference between the emission and the excitation wavelengths (${\Delta}{\gamma}$) was large. The efficacy of several selected fluorescence parameters was rivers in Seoul. The fluorescence parameters exhibited relatively good correlation coefficients with the BOD values, ranging from 0.59 to 0.90. Two parameters were suggested to be the optimum BOD predictors, which were a fluorescence peak at a wavelength of 283 nm from the synchronous spectrum at the ${\Delta}{\gamma}$ value of 75 nm, and the integrated fluorescence intensity of the first derivatives of the spectra at the wavelength range between 245 nm and 280 nm. Each BOD predictor showed the correlation coefficients of 0.89 and 0.90, respectively. It is expected that the results of this study will provide important information to develop a real-time efficient sensor for river BOD in the future.

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

What we have learned about Gamma-ray bright AGNs using the iMOGABA program

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2017
  • A Korean VLBI Network Key Science Program, the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA) program continues to aim at revealing the origins of the gamma-ray flares that are often detected in active galactic nuclei (AGNs). Here in this presentation, we would like to present what we have learned about the Gamma-ray bright AGNs based on the recent results of the Korean VLBI Network Key Science Program: the iMGOABA. The results will include a) the source properties of the whole samples obtained from a single-epoch observation, and b) some of scientific highlights for the iMOGAGBA on specific sources. From those highlighted works, we find that the Gamma-ray bright AGNs become fainter at higher frequencies, yielding optically thin spectra at mm wavelengths. Based on the studies on specific sources, taking into account the synchrotron self-absorption model of the relativistic jet, we estimated the magnetic field strength in the mas emission region during the observing period.

  • PDF

Electroencephalogram Power Spectra in Thioacetamide-induced Hepatic Encephalopathy (Thioacetamide 유발 간성뇌장애에서 뇌파 Power Spectra)

  • Lee, Chi-Hui;Choi, Won-Jin;Park, Jung-Sook;Lee, Hyang-Yi;Ha, Jeoung-Hee;Lee, Maan-Gee
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.293-300
    • /
    • 1996
  • During the development of hepatic encephalopathy after thioacetamide (TAA) injection to rat, EEG was recorded at two different states: without or with tactile stimulation of tail at regular intervals. Calculations based on the spectral and band analysis were used. The changes in the power spectra and bands were examined in 3 different behavioral stages: normal, mild ataxia and severe ataxia. In normal rats, the stimulation produced the increase in the power of the theta $(3.5{\sim}8\;Hz)$ and the gamma $(30{\sim}50\;Hz)$ bands. These changes could not be produced in rats with the mild and severe ataxia. The changes in the power of the theta band occurred earlier than those of the beta3 and the gamma bands in the stimulated state. Gradual decreases in the spectral power of the beta3 $(21{\sim}30\;Hz)$ and the gamma bands were correlated with the progress of the stages from normal condition to mild to severe ataxia in both unstimulated and stimulated states. The results indicate that the spectral and band analysis used in this study can quantify the severity of the neurological malfunction during HE.

  • PDF

Fourier Transform Raman Studies of Methyl Red Adsorbed on γ-Alumina and Silica-Alumina

  • Park, Sun-Kyung;Lee, Choong-Keun;Min, Kyung-Chul;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1817-1821
    • /
    • 2004
  • Fourier transform Raman spectra of methyl red adsorbed on untreated and pretreated ${\gamma}$-alumina and silicaalumina calcined at 900 $^{\circ}C$ under 1 atm steam flowing were recorded. Spectral analysis shows that the active species adsorbed on ${\gamma}$-alumina was to be deprotonated methyl red, and on silica-alumina to be di-protonated. This indicates that ${\gamma}$-alumina adapted in this work holds Bronsted basicity, and silica-alumina Bronsted acidity. Raman intensities of methyl red on pretreated ${\gamma}$-alumina are about three times stronger than on untreated ${\gamma}$-alumina, while spectral features are unchanged. For silica-alumina, spectral features show modified vibrational characteristics upon surface hydroxylations generated from pretreatment. Consequently, the acidity loss for silica-alumina and the basicity gain for ${\gamma}$-alumina were observed by increasing the surface hydroxyl groups on the catalysts through pretreatment of the steam calcination.

Calculation and measurement of Al prompt capture gammas above water in a pool-type reactor

  • Czakoj, Tomas;Kostal, Michal;Losa, Evzen;Matej, Zdenek;Simon, Jan;Mravec, Filip;Cvachovec, Frantisek
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3824-3832
    • /
    • 2022
  • Prompt capture gammas are an important part of the fission reactor gamma field. Because some of the structural materials after neutron capture can emit photons with high energies forming the dominant component of the gamma spectrum in the high energy region, the following study of the high energy capture gamma was carried out. High energy gamma radiation may play a major role in areas of the radiation sciences as reactor dosimetry. The HPGe measurements and calculations of the high-energy aluminum capture gamma were performed at two moderator levels in the VR-1 pool-type reactor. The result comparison for nominal levels was within two sigma uncertainties for the major 7.724 MeV peak. A larger discrepancy of 60% was found for the 7.693 MeV peak. The spectra were also measured using a stilbene detector, and a good agreement between HPGe and stilbene was observed. This confirms the validity of stilbene measurements of gamma flux. Additionally, agreement of the wide peak measurement in 7-9.2 MeV by stilbene detector shows the possibility of using the organic scintillators as an independent power monitor. This fact is valid in these reactor types because power is proportional to the thermal neutron flux, which is also proportional to the production of capture gammas forming the wide peak.