• Title/Summary/Keyword: Gamma rays

Search Result 596, Processing Time 0.03 seconds

Studying the operation of MOSFET RC-phase shift oscillator under different environmental conditions

  • Ibrahim, Reiham O.;Abd El-Azeem, S.M.;El-Ghanam, S.M.;Soliman, F.A.S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1764-1770
    • /
    • 2020
  • The present work was mainly concerned with studying the operation of RC-phase shift oscillator based on MOSFET type 2N6660 under the influence of different temperature levels ranging from room temperature (25 ℃) up-to135 ℃ and gamma-irradiation up-to 3.5 kGy. In this concern, both the static (I-V) characteristic curves of MOSFET devices and the output signal of the proposed oscillator were recorded under ascending levels of both temperature and gamma-irradiation. From which, it is clearly shown that the drain current was decreased from 0.22 A, measured at 25 ℃, down to 0.163 A, at 135 ℃. On the other hand, its value was increased up-to 0.49 A, whenever the device was exposed to gamma-rays dose of 3.5 kGy. Considering RC-phase shift oscillator, the oscillation frequency and output pk-pk voltage were decreased whenever MOSFET device exposed to gamma radiation by ratio 54.9 and 91%, respectively. While, whenever MOSFET device exposed to temperature the previously mentioned parameters were shown to be decreased by ratio 2.07 and 46.2%.

Pin Power Distribution Determined by Analyzing the Rotational Gamma Scanning Data of HANARO Fuel Bundle

  • Lee, Jae-Yun;Park, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.452-461
    • /
    • 1998
  • The pin power distribution is determined by analyzing the rotational gamma scanning data for 36 element fuel bundle of HANARO. A fission monitor of Nb$^{95}$ is chosen by considering the criteria of the half-life, fission yield, emitting ${\gamma}$-ray energy and probability. The ${\gamma}$-ray spectra were measured in Korea Atomic Energy Research Institute(KAERI) by using a HPGe detector and by rotating the fuel bundle at steps of 10$^{\circ}$. The counting rates of Nb$^{95}$ 766 keV ${\gamma}$-rays are determined by analyzing the full absorption peak in the spectra. A 36$\times$36 response matrix is obtained from calculating the contribution of each rod at every scanning angle by assuming 2-dimensional and parallel beam approximations for the measuring geometry. In terms of the measured counting rates and the calculated response matrix, an inverse problem is set up for the unknown distribution of activity concentrations of pins. To select a suitable solving method, the performances of three direct methods and the iterative least-square method are tested by solving simulation examples. The final solution is obtained by using the iterative least-square method that shows a good stability. The influences of detection error, step size of rotation and the collimator width are discussed on the accuracy of the numerical solution. Hence an improvement in the accuracy of the solution is proposed by reducing the collimator width of the scanning arrangement.

  • PDF

DNA Double-Strand Breaks Serve as a Major Factor for the Expression of Arabidopsis Argonaute 2

  • Lee, Sungbeom;Chung, Moon-Soo;Lee, Gun Woong;Chung, Byung Yeoup
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.243-248
    • /
    • 2016
  • Argonaute 2 (AtAGO2) is a well characterized effector protein in Arabidopsis for its functionalities associated with DNA double-strand break (DSB)-induced small RNAs (diRNAs) and for its inducible expression upon ${\gamma}$-irradiation. However, its transcriptional regulation depending on the recovery time after the irradiation and on the specific response to DSBs has been poorly understood. We analyzed the 1,313 bp promoter sequence of the AtAGO2 gene ($1.3kb_{pro}$) to characterize the transcriptional regulation of AtAGO2 at various recovery times after ${\gamma}$-irradiation. A stable transformant harboring $1.3kb_{pro}$ fused with GUS gene showed that the AtAGO2 is highly expressed in response to ${\gamma}$-irradiation, after which the expression of the gene is gradually decreased until 5 days of DNA damage recovery. We also confirm that the AtAGO2 expression patterns are similar to that of ${\gamma}$-irradiation after the treatments of radiomimetic genotoxins (bleomycin and zeocin). However, methyl methanesulfonate and mitomycin C, which are associated with the inhibition of DNA replication, do not induce the expression of the AtAGO2, suggesting that the expression of the AtAGO2 is closely related with DNA DSBs rather than DNA replication.

Experimental setup for elemental analysis using prompt gamma rays at research reactor IBR-2

  • Hramco, C.;Turlybekuly, K.;Borzakov, S.B.;Gundorin, N.A.;Lychagin, E.V.;Nehaev, G.V.;Muzychka, A. Yu;Strelkov, A.V.;Teymurov, E.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2999-3005
    • /
    • 2022
  • The new experimental setup has been built at the 11b channel of the IBR-2 research reactor at FLNP, JINR, to study the elemental composition of samples by registration of prompt gamma emission during thermal neutron capture. The setup consists of a curved mirror neutron guide and a radiation-resistant HPGe high-purity germanium detector. The detector is surrounded by lead shielding to suppress the natural background gamma level. The sample is placed in a vacuum channel and surrounded by a LiF shield to suppress the gamma background generated by scattered neutrons. This work presents characteristics of the experimental setup. An example of hydrogen concentration determining in a diamond powder made by detonation synthesis is given and on its basis, the sensitivity of the setup is calculated being ~4 ㎍.

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka;Akira Ohzu;Yosuke Toh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4002-4018
    • /
    • 2023
  • An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.

Performance Evaluation of a Fiber-Optic Cerenkov Radiation Sensor System Using a Simulated Spent Fuel Assembly (사용후핵연료 집합체 모사장치를 이용한 광섬유 체렌코프 방사선 센서 시스템의 성능평가)

  • Shin, Sang Hun;Yoo, Wook Jae;Jang, Kyoung Won;Cho, Seunghyun;Park, Byung Gi;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2014
  • When the charged particle travels in transparent medium with a velocity greater than that of light in the same medium, the electromagnetic field close to the particle polarizes the medium along its path, and then the electrons in the atoms follow the waveform of the pulse which is called as Cerenkov light or radiation. This type of radiation can be easily observed in a spent fuel storage pit. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, simulated spent fuel assembly and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the intensities of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, we measured the longitudinal distribution of gamma rays emitted from the Ir-192 isotope by using the fiber-optic Cerenkov radiation sensor system and simulated spent fuel assembly.

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

The Compensation of the Energy Dependence of TLD (열형광선량계(熱螢光線量計)의 에너지의존성(依存性) 보상(補償))

  • Park, Myeong-Hwan;Lee, Joon-Il;Kwon, Duk-Moon
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.51-60
    • /
    • 1993
  • The $CaSO_4$ : Tm-PTFE TLDs have been prepared and their energy dependences of TL intensity to X-rays have been investigated. The dose dependence of the prepared $CaSO_4$ : Tm-PTFE TLDs is linear within the range of $100{\mu}Gy-10Gy$ for X-rays and gamma rays. The spectral peaks of TL emission spectrum are at about 350nm and 475nm. The fading rate of the main peak has been found to be about 2% for 30days when $CaSO_4$ : Tm-PTFE TLDs stored in the dark room at room temperature. The energy dependence of $CaSO_4$ : Tm-PTFE TLD has been compensated by combining the TL responses of one bare TLD and five TLDs filtered with 1.0mm Al, 0.2mm Cu, 0.5mm Cu, 1.5mm Cu, 2.0mm Pb respectively. The determined correction coefficients for filter combination are $a_0=0.078,\;a_1=-0.009,\;a_2=-0.235,\;a_3=0.588,\;a_4=0.568\;and\;a_5=0.180$ respectively. From the results of these studies, the prepared TLD badge of six dosimeter combination may be useful as a radiation dosimeter for personal and environmental monitoring.

  • PDF

Genetic Variation Analysis of Arabidopsis (Arabidopsis thaliana L.) Plants Induced by Acute and Chronic Gamma Irradiation (감마선 완·급조사에 따른 애기장대의 유전적 유연관계 분석)

  • Goh, Eun Jeong;Kim, Jin-Baek;Ha, Bo-Keun;Kim, Sang Hoon;Kang, Si-Yong;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.347-352
    • /
    • 2011
  • In order to identify the genetic relationship analysis by acute and chronic gamma irradiation, Arabidopsis (Arabidopsis thaliana L.) were irradiated with 200 Gy of gamma-rays using gamma-irradiator (3,000 Ci; Nordion, Canada) and gamma-phytotron (400 Ci; Nordion, Canada) for acute and chronic irradiation, respectively. Genetic relationship among two acute gamma-irradiated plants (A1 and A24) and three chronic gamma-irradiated plants (C1W, C2W, C3W) were analyzed using the amplified fragment length polymorphism (AFLP) technique compared with each non-irradiated plant. A total of 28 EcoRI and MseI primer combinations were used to screen 8 treatments by the ABI3130 capillary electrophoresis system. Amplified products by 28 primer sets showed 1,679 bands with an average of 51 bands per primer combination. Out of the total bands scored, 1,164 fragments were polymorphic bands, with different alleles existing among the treatments. The cluster analysis was performed using the UPGMA (Unweighted Pair Group Method using Arithmetic) in the computer program NTSYS-pc. In clustery analysis, acute gamma-irradiation showed higher genetic variation compared with chronic gamma-irradiation.