• Title/Summary/Keyword: Gamma camera system

Search Result 92, Processing Time 0.025 seconds

Study of Simultaneous Counting of Thyroid Uptake with Quantitative Analysis of Thyroid Scans (갑상샘 스캔 정량분석을 통한 갑상샘 섭취율 동시계측법 연구)

  • Jung-Soo Kim;Geun-Woo Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.401-408
    • /
    • 2023
  • Thyroid uptake measurements can be subject to measurement errors due to the scoping and positioning of the thyroid gland. To compensate for these limitations, the clinical utility of the thyroid simultaneous counting method as an alternative to thyroid uptake measurement was analyzed and evaluated experimentally through quantitative analysis of images acquired after thyroid scanning. Experimental data were obtained using a Gamma camera (GE infinia), a thyroid uptake system (KOROID 1), and a thyroid neck phantom. Based on the thyroid uptake rate of 1-5% according to the protocol of thyroid scan test (99mTcO4 - , 370 MBq) in normal results, 99mTcO4 - was set in the range of 3.7-18.5 MBq (Matrix: 256×256, Scan time: 1 min, collimator: pin hole, phantom-collimator distances: 7 cm). The acquired images were corrected for the attenuation of isotopes due to the set-up time and half-life by applying the Auto Region of interest (ROI) drawing system, and the significance of the experimental results was evaluated by Multiple linear regression analysis (SPSS, ver. 22, IBM). The thyroid uptake rate showed a significant correlation between the dose and the measured counts when using the thyroid uptake system equipment. Meanwhile, the quantitative analysis counts of phantom images using Gamma camera also showed a significant correlation. Thus confirmed that the correlation between these two experiments was statistically significant (P<0.05). The simultaneous counting protocol, which indirectly measures thyroid uptake from thyroid scans, is likely to be clinically relevant if complemented by additional studies with different variables in patients with thyroid disease.

Development and Evaluation of Maximum-Likelihood Position Estimation with Poisson and Gaussian Noise Models in a Small Gamma Camera

  • Chung, Yong-Hyun;Park, Yong;Song, Tae-Yong;Jung, Jin-Ho;Gyuseong Cho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.331-334
    • /
    • 2002
  • It has been reported that maximum-likelihood position-estimation (MLPE) algorithms offer advantages of improved spatial resolution and linearity over conventional Anger algorithm in gamma cameras. The purpose of this study is to evaluate the performances of the noise models, Poisson and Gaussian, in MLPE for the localization of photons in a small gamma camera (SGC) using NaI(Tl) plate and PSPMT. The SGC consists of a single NaI(Tl) crystal, 10 cm diameter and 6 mm thick, optically coupled to a PSPMT (Hamamatsu R3292-07). The PSPMT was read out using a resistive charge divider, which multiplexes 28(X) by 28(Y) cross wire anodes into four channels. Poisson and Gaussian based MLPE methods have been implemented using experimentally measured light response functions. The system resolutions estimated by Poisson and Gaussian based MLPE were 4.3 mm and 4.0 mm, respectively. Integral uniformities were 29.7% and 30.6%, linearities were 1.5 mm and 1.0 mm and count rates were 1463 cps and 1388 cps in Poisson and Gaussian based MLPE, respectively. The results indicate that Gaussian based MLPE, which is convenient to implement, has better performances and is more robust to statistical noise than Poisson based MLPE.

  • PDF

Design of an Medical Image Presentation System for a Small Gamma Camera (소형 감마 카메라용 의료영상 표현 시스템 설계)

  • Lee, Su-Jin;Kim, Moon-Hae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.187-190
    • /
    • 2001
  • 요즘 의료 분야는 환자 병력 약제 정보등과 같은 다양한 의료정보가 증가함에 따라 정보화의 요구가 대두되고, 이는 디지털 영상의 등장과 함께 컴퓨터의 도움을 받는 소프트웨어의 개발로 이어지고 있다. 본 논문에서는 이러한 추세에 맞춰, 이전에 개발된 유방암 전용 소형 감마카메라로부터 신호를 획득하여 실시간으로 디지털 영상을 만들어 내고 화면에 디스플레이하는 의료영상 표현 시스템을 설계하고 구현한다.

  • PDF

The Study for Improved Efficiency of the Detection of Radiation Sources Distribution using Image Processing (영상처리기반 감마선 분포탐지 효율 개선에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho;Kim, Jong-yeol;Jeong, Sang-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.780-781
    • /
    • 2016
  • The stereo radiation detection system detects gamma ray source and measures the two dimensional distribution image based on the detection result. Then the system is implemented to measure the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we reduced the time for a gamma-ray scan space detection through image processing algorithms. In addition, it combines radiation and visible light images. Then we conducted a study for improving the distribution of gamma-ray detection efficiency through the stereo calibration using a 3D visualization. As a result, we obtain an improved detection time by more than 30% and have acquired a visible image with a 3D monitor.

  • PDF

Influence of Void on Performance of Industrial SPECT System (공정 내 기포가 산업용 SPECT의 성능에 미치는 영향)

  • Park, Jang Guen;Jung, Sung-Hee;Kim, Jong Bum;Moon, Jinho;Kim, Chan Hyeong
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.23-27
    • /
    • 2014
  • Industrial single photon emission computed tomography (SPECT) is an useful technique to investigate the dynamic behavior of process flow. In the present study, to evaluate the influence of a void on the performance of industrial SPECT, industrial SPECT with various radioisotope sources and gas holdups was modeled by the Monte Carlo simulation. The results are very encouraging; that is, the void little influences the performance of industrial SPECT, which means that industrial SPECT could be a suitable tool to investigate the dynamic characteristics of the flow in a water-air phase process.

Comparison of SPECT Images with $^{99m}Tc$ Collimators ($^{99m}Tc$용 콜리메타의 성능과 SPECT 화상의 영향)

  • Lee, Man-Koo;Lee, Jeong-Ok;Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2001
  • Performance of SPECT imaging systems which use a rotating gamma camera, are affected by characteristics of the detector-collimator assembly, the data acquisition method, and the filter used in imaging reconstruction. The purpose of this study Is to examine image qualifies of SPECT with different types of low energy collimators. The SPECT imaging system in this study is a digital gamma camera system GCA-901A(Toshiba) and a data processing unit Scintipac-700(Shimadzu). The four types of collimators compared are UHR(ultra high resolution), LEHR(low energy high resolution), LEGP(low energy general purpose), and I-123 PAR(Parallel), with 0.27, 0.66, 1.00, and 2.06 relative sensitivity, respectively. In this case of the same collimators, the spatial resolutions measured in the slice plane showed a slight difference in the FWHM values(mean values of UHR, LEHR, LEGP, and I-123 PAR were 11.3 mm, 13.6 mm, 15.8 mm, and 20.4 mm, respectively) between the center and the circumference of the field of view, in the radial direction, but a large difference in the tangential direction, with lower FWHM values(values of UHR, LEHR, LEGP, and I-123 PAR were 8.4 mm, 8.7 mm, 9.3 mm, and 10.8 mm at 12 cm from the center, respectively). In comparison of SPECT images with the four types of collimators, except for the I-123 PAR collimator, image qualities of UHR, LEHR, and LEGP collimators showed only a slight difference. From the point of for, it is expected that the LEGP collimator would be suitable for SPECT imaging with $^{99m}Tc$.

  • PDF

Study the Analysis of Comparison with AROI and MROI Mode in Gated Cardiac Blood Pool Scan (게이트심장혈액풀 스캔에서 자동 관심영역 설정과 수동 관심영역 설정 모드의 비교 분석에 관한 고찰)

  • Kim, Jung-Yul;Kang, Chun-Koo;Kim, Yung-Jae;Park, Hoon-Hee;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.222-228
    • /
    • 2008
  • Purpose: The objectives of this study were to compare the left ventricle ejection fraction (LVEF) from gated cardiac blood pool scan (GCBP) for analysis auto-drawing region of interest mode (AROI) and manual-drawing region of interest mode (MROI), respectively. To evaluation the relationships between values produced by both ROI modes. Materials and Methods: Gated cardiac blood pool scan using in vivo method Tc-99m Red Blood Cell were performed for 33 patients (mean age: $53.2{\pm}13.2\;y$) with objective of chemotherapy using single head gamma camera (ADAC Laboratories, Milpitas, CA). Left ventricular ejection fraction was automatically and manually measured, respectively. Results: There was significant difference statistically between AROI and MROI ($LVEF^{AROI}$: $71.4{\pm}12.4%$ vs. $LVEF^{MROI}$: $65.8{\pm}5.9%$, p=0.003). Intra-observer agreements in AROI was higher than MROI ($\gamma^{AROI}=0.964$, Cronbach's $\alpha^{AROI}=0.986$ vs. $\gamma^{MROI}=0.793$, Cronbach's $\alpha^{MROI}=0.911$), either. Additionally, there was no significant difference statistically at best septal view (${\Delta}LVEF^{BSV}=0.7{\pm}2.3%$, p=0.233), however statistically significant difference was found at badly separated septal view (${\Delta}LVEF=10.9{\pm}11.4%$, p=0.001). Moreover, Intra-observer agreements in best septal view was higher than badly separated septal view ($\gamma^{BSV}=0.939$, Cronbach's $\alpha^{BSV}=0.978$; $\gamma=0.948$, Cronbach's $\alpha=0.981$ at AROI, $\gamma^{BSV}=0.836$, Cronbach's $\alpha^{BSV}=0.936$; $\gamma=0.748$, Cronbach's $\alpha=0.888$ at MROI). Conclusion: When best septal view was acquired, LVEF by AROI and MROI indicated not different. Comparing Intra-observer agreements with AROI and MROI, the AROI tended to show higher. Therefore, it is considered that the AROI than MROI is valuable in reproducibility and objective when ROI analysis by acquire left ventricular of best septal view.

  • PDF

Camera for Quasars in Early Universe

  • Park, Won-Kee;Pak, Soojong;Im, Myungshin;Choi, Changsu;Jeon, Yiseul;Chang, Seunghyuk;Jeong, Hyeonju;Lim, Juhee;Kim, Eunbin;Choi, Nahyun;Lee, Hye-In;Kim, Sanghyuk;Jeong, Byeongjoon;Ji, Taegeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2013
  • Camera for QUasars in EArly uNiverse (CQUEAN) is an optical CCD camera system made by Center for Exploration of the Origin of the Universe (CEOU). CQUEAN is developed for follow-up observation of red sources such as high-redshift quasar candidates ($z{\geq}5$), gamma-ray bursts (GRB), brown dwarfs and young stellar objects. The CQUEAN is composed of a science camera with deep-depletion CCD chip which is sensitive at around $1{\mu}m$, a set of custom-made wide-band filters for detection of quasar candidates at z~5, and a guide camera. A focal reducer was developed to secure $4.8^{\prime}{\times}4.8^{\prime}$ field of view, and an in-house user software for efficient data acquisition. CQUEAN was attached to 2.1m Otto Struve Telescope in McDonald Observatory, USA, in August 2010. About 1000 quasar candidates including 3 confirmed with follow-up spectroscopy, have been observed so far, and many high-z galaxy cluster candidates, GRBs and supernovae were also observed. And monitoring of HBC 722, a young stellar object, is under way since 2011. Further enhancement of CQUEAN including the introduction of narrow-band filters is planned.

  • PDF

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

A Study Left Ventricular Volume Change Measurement using Nuclear Stethoscope (핵청진기를 이용한 좌심실 부피변화 측정에 관한 연구)

  • Min, Byeong-Gu;Kim, Yeong-Ho;Go, Chang-Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.167-172
    • /
    • 1984
  • In the present study, we developed a nuclear stethoscope interfaced with a personal computer (APPLE- II) and evaluated it's performances as compared with the gamma camera. This single-probe, ECG-gated system has been used for displaying the left ventricular time-activity curves, the peak ejection time and its rate, the peak filling time and its rate, and the R-R interval distribution. The radioactivity was measured at every 10msec around the ventricular region, where the activity curves shows the maximal peak to peak variations. The background activity was measured around the lung area showing its counts approximately 50% of the end-diastolic count with minimal variations. The average time-activity curves of 100 beats were used for analysis in the equilibrium study after intravenous injection of 15-20mCi of Tc. The ejection fractions measured by the nuclear stethoscope(Y) were compared with those measured by gamma camera(X) in 47 patients with various heart diseases. The correlation coefficient between two measurements was 0.766 with a relation of Y=1.04 x-8.48. Also, the high reproducibility was obtained for the same patient. Also, the high reproducibility was obtained for the same patient. From this study, we conclude that this device is useful for continuous monitoring in the intensive care unit, as it is portable, compact, and inexpensive.

  • PDF