• Title/Summary/Keyword: Gamma Radiation

Search Result 2,195, Processing Time 0.031 seconds

Evaluation of Radioactive Substance and Measurement of Harmfulness in Drinking Water (먹는 샘물의 방사성물질 측정 및 유해성 평가)

  • Jo, Jungwon;Lee, Sangbok;Nam, Johyeon;Noh, Eunjeong;Beak, Hyunwoo;Lee, Yejin;Lee, Joonse;Choi, Jiwon;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.247-252
    • /
    • 2021
  • As the number of single-person households increases, the consumption of bottled water is increasing. In addition, as the public's interest in radioactivity increases, interest in the field of living radioactivity is also increasing. Since drinking water is an essential element in our daily life, it must be safe from radioactivity. In this study, gamma radiation of drinking spring water was measured and internal exposure dose evaluation was performed to determine its harmfulness. K-40 and uranium-based radioactivity analysis was performed through a high-purity germanium detector, and as a result, drinking water was detected somewhat higher than that of mixing water. Since there is no regulation on the natural radioactivity concentration in Korea, it was compared with the U.S. Environmental Protection Agency Drinking Water Regulations and World Health Organization standard. As a result, there were some items that exceeded standards. Internal exposure was evaluated according to the effective dose formula of ICRP 119. As the result was derived that a maximum of 1.17 mSv per year could be received. This result means that the dose limit for the general public may be exceeded, and it was judged that it is necessary to set an appropriate standard value and present a recommendation value through continuous monitoring in the future.

Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry

  • Rahmat, Muhammad Abdullah;Ismail, Aznan Fazli;Rodzi, Nursyamimi Diyana;Aziman, Eli Syafiqah;Idris, Wan Mohd Razi;Lihan, Tukimat
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2230-2243
    • /
    • 2022
  • The tin tailing processing industry in Malaysia has operated with minimal regard and awareness for material management and working environment safety, impacting the environment and workers in aspects of radiation and heavy metal exposure. RIA was conducted where environmental samples were analyzed, revealing concentrations of 226Ra, 232Th and 40K between the range of 0.1-10.0, 0.0-25.7, and 0.1-5.8 Bq/g respectively, resulting in the AED exceeding UNCEAR recommended value and regulation limit enforced by AELB (1 mSv/y). Raeq calculated indicates that samples collected pose a significant threat to human health from gamma-ray exposure. Assessment of heavy metal content via pollution indices of soil and sediment showed significant contamination and enrichment from processing activities conducted. As and Fe were two of the highest metals exposed both via soil ingestion with an average of 4.6 × 10-3 mg/kg-day and 1.4 × 10-4 mg/kg-day, and dermal contact with an average of 5.6 × 10-4 mg/kg-day and 6.0 × 10-4. mg/kg-day respectively. Exposure via accidental ingestion of soil and sediment could potentially cause adverse non-carcinogenic and carcinogenic health effect towards workers in the industry. Correlation analysis indicates the presence of a relationship between the concentration of NORM and trace elements.

Assessment of radionuclides from coal-fired brick kilns on the outskirts of Dhaka city and the consequent hazards on human health and the environment

  • M.M. Mahfuz Siraz;M.D.A. Rakib;M.S. Alam;Jubair Al Mahmud;Md Bazlar Rashid;Mayeen Uddin Khandaker;Md. Shafiqul Islam;S. Yeasmin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2802-2811
    • /
    • 2023
  • In a first-of-its-kind study, terrestrial radionuclide concentrations were measured in 35 topsoil samples from the outskirts of Dhaka using HPGe gamma-ray spectrometry to assess the radiological consequences of such a vast number of brick kilns on the plant workers, general as well as dwelling environment. The range of activity concentrations of 226Ra, 232Th, and 40K is found at 19 ± 3.04 to 38 ± 4.94, 39 ± 5.85 to 57 ± 7.41, and (430 ± 51.60 to 570 ± 68.40) Bq/kg, respectively. 232Th and 40K concentrations were higher than the global averages. Bottom ash deposition in lowlands, fly ash buildup in soils, and the fallout of micro-particles are all probable causes of the elevated radioactivity levels. 137Cs was found in the sample, which indicates the migration of 137Cs from nuclear accidents or nuclear fallout, or the contamination of feed coal. Although the effective dose received by the general public was below the recommended dose limit but, most estimates of hazard parameters surpass their respective population weighted global averages, indicating that brick kiln workers and nearby residents are not safe due to prolonged exposures to terrestrial radiation. In addition, the soil around sampling sites is found to be unsuitable for agricultural purposes.

Circumstellar Clumps in the Cassiopeia A Supernova Remnant: Prepared to be Shocked

  • Koo, Bon-Chul;Kim, Hyun-Jeong;Oh, Heeyoung;Raymond, John C.;Yoon, Sung-Chul;Lee, Yong-Hyun;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2020
  • Cassiopeia A (Cas A) is a young supernova remnant (SNR) where we observe the interaction of SNR blast wave with circumstellar medium. From the early optical studies, dense, slowly-moving, N-rich "quasi-stationary flocculi" (QSF) have been known. These are probably dense CNO-processed circumstellar knots that have been engulfed by the SNR blast wave. We have carried out near-infrared, high-resolution (R=45,000) spectroscopic observations of ~40 QSF, and here we present the result on a QSF knot (hereafter 'Knot 24') near the SNR boundary of Cas A. The average [Fe II] 1.644 um spectrum of Knot 24 has a remarkable shape with a narrow (~8 km/s) line superposed on the broad (~200 km/s) line emitted from shocked gas. The spatial morphology and the line parameters indicate that Knot 24 has been partially destroyed by a shock wave and that the narrow line is emitted from the unshocked material heated/ionized by the shock radiation. This is the first detection of the emission from the pristine circumstellar material of the Cas A supernova progenitor. We also detected H Br gamma and other [Fe II] lines corresponding to the narrow [Fe II] 1.644 um line. For the main clump where we can clearly identify the shock emission associated with the unshocked material, we analyze the observed line ratios using a shock model that includes radiative precursor. The analysis indicates that the majority of Fe in the unshocked material is in the gas phase, not depleted onto dust grains as in the general interstellar medium. We discuss the non-depletion of Fe in QSF and its implications on the immediate progenitor of the Cas A supernova.

  • PDF

A close look at the influence of praseodymium (III) oxide on the structural, physical, and γ-ray protection capacity of a ternary B2O3-PbO-CdO glass system

  • R.H. Shoeir;M. Afifi;Abdelghaffar S. Dhmees;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2258-2265
    • /
    • 2024
  • The present investigation aims to study the role of Pr2O3 on the structural, physical, and radiation shielding properties of a dense cadmium lead borate glass. The XRD was used to affirm the glassy amorphous structure of fabricated sample materials. Moreover, the FTIR was used to record the change in the FT-IR spectra due to the addition of Pr2O3 in the wavenumber interval between 400 and 4000 cm-1. The features of glass surfaces and the elemental analyses for the synthesized Pr2O3-reinforced cadmium lead borate glasses were performed using a SEM, supported by an energy-dispersive spectrometer. The γ-ray protection capacity was evaluated using the Monte Carlo method in a wide energy interval ranging between 0.015 and 15 MeV. The linear attenuation coefficient (LAC) at 1 MeV was reduced by a factor of 10 % from 0.372 cm-1 to 0.340 cm-1. The decrease in the LAC values negatively affected the other shielding properties such as half-value thickness and the transmission factor. Although the linear attenuation coefficient is decreased slightly with the partial substitution of CdO by Pr2O3 compound, the fabricated glass samples still have a high shielding capacity compared to the traditional commercial glasses as well as previous similar reported glasses.

Evaluating internal exposure due to intake of 131I at a nuclear medicine centre of Dhaka using bioassay methods

  • Sharmin Jahan;Jannatul Ferdous;Md Mahidul Haque Prodhan;Ferdoushi Begum
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2050-2056
    • /
    • 2024
  • Handling of radioisotopes may cause external and internal contamination to occupational workers while using radiation for medical purposes. This research aims to monitor the internal hazard of occupational workers who handle 131I. Two methods are used: in vivo or direct method and in vitro or indirect method. The in vivo or direct method was performed by assessing thyroid intake with a thyroid uptake monitoring machine. The in vitro or indirect method was performed by assessing urine samples with the help of a gamma-ray spectroscopy practice using a High-Purity Germanium (HPGe) Detector. In this study, fifty-nine thyroid counts and fifty-nine urine samples were collected from seven occupational workers who were in charge of 131I at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Dhaka. The result showed that the average annual effective dose of seven workforces from thyroid counts were 0.0208 mSv/y, 0.0180 mSv/y, 0.0135 mSv/y, 0.0169 m Sv/y, 0.0072 mSv/y, 0.0181 mSv/y, 0.0164 mSv/y and in urine samples 0.0832 mSv/y, 0.0770 mSv/y, 0.0732 mSv/y, 0.0693 mSv/y, 0.0715 mSv/y, 0.0662 mSv/y, 0.0708 mSv/y.The total annual effective dose (in vivo and in vitro method) was found among seven workers in average 0.1039 mSv/y, 0.0950 mSv/y, 0.0868 mSv/y, 0.0862 mSv/y, 0.0787 mSv/y, 0.0843 mSv/y, 0.0872 mSv/y. Following the rules of the International Commission on Radiological Protection (ICRP), the annual limit of effective dose for occupational exposure is 20 mSv per year and the finding values from this research work are lesser than this safety boundary.

Evaluation of the combination of Bone Scan Image and Pelvic X-ray Image (뼈 검사 영상과 골반 X선 영상의 결합 유용성 평가)

  • Lee, Choong Woon;You, Yeon Wook;Kim, Yong Keun;Weon, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2018
  • Purpose The introduction of bone scan has been reported as a useful tool in the diagnosis, treatment, and treatment response of skeletal disease. The purpose of this study is to improve the anatomical information and tolerance of the bone by combining bone scan and pelvic X-ray without additional radiation exposure. Materials and Methods From November 2015 to August 2016, 236 patients(64 men and 172 women, average age $50.96{\pm}15.39years$) take Bone scan and Pelvis AP(Anteroposterior) X-ray scan at the National Cancer Center. The scan equipment was a gamma camera, Symbia Ecam (SIEMENS, Germany), and a digital x-ray, DRS-800 (Listem, Korea). Osirix version 3.8.1 (Osirix, USA) and Stata/SE version 14.0 (StataCorp, USA) were used for image combination and analysis. The patient was intravenously injected with $^{99m}Tc-DPD$ (740 MBq), and the scan was performed 2 to 4 hours later. Gamma camera image acquisition were Matrix size $256{\times}1024$, Zoom 1.00, and scan speed 17 cm/min. The digital X-ray was made with a collimator size of $14^{{\prime}{\prime}}{\times}17^{{\prime}{\prime}}$, 77 kVp (60 to 97 kVp) and an average of 30 mAs (20 to 48). ASIS and pubic symphysis Select virtual points then Combine three virtual points and pelvic contour lines. The acquired images were evaluated by three radiologists who worked for more than 5 years in the nuclear medicine department. Results Of the total 236 patients, 216 (91.53%) were matched. The median and range (min~max) of the age were 67 (46~81) years old in the unmatched group and 52 (22~87) years old in the matched group, The Wilcoxon rank-sum test was performed to determine whether age was different between the two groups. As a result, the age difference between the two groups was statistically significant at p < 0.0001. Of the 64 men, 60 (93.75%) were match and of the 172 women, 156 (93.75%) were match. There was no statistically significant difference according to gender(p = 0.4542). Of the 54 patients without pelvic lesions, 54 (100.00%) were match, and 162 (89.01%) of 182 patients with pelvic lesions were match. There was a statistically significant difference according to the presence of pelvic lesions. Conclusion There are many variables in the combination of bone scan and pelvic X-ray imaging, and the patient's age and pelvic lesion may have some effect on the image combination. This study is expected to be useful for the diagnosis of pelvic osteosarcoma of children without radiation exposure. It is expected that this combination of images will help to develop the nuclear medicine image.

Study on the Physical Properties of the Gamma Beam-Irradiated Teflon-FEP and PET Film (Teflon-FEP 와 PET Film 의 감마선 조사에 따른 물리적 특성에 관한 연구)

  • 김성훈;김영진;이명자;전하정;이병용
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • Circular metal electrodes were vacuum-deposited with chromium on the both sides of Teflon-FEP and PET film characteristic of electret and the physical properties of the two polymers were observed during an irradiation by gamma-ray from $\^$60/Co. With the onset of irradiation of output 25.0 cGy/min the induced current increased rapidly for 2 sec, reached a maximum, and subsequently decreased. A steady-state induced current was reached about in 60 second. The dielectric constant and conductivity of Teflon-FEP were changed from 2.15 to 18.0 and from l${\times}$l0$\^$-17/ to 1.57${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/, respectively. For PET the dielectric constant was changed from 3 to 18.3 and the conductivity from 10$\^$-17/ to 1.65${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/. The increase of the radiation-induced steady state current I$\^$c/, permittivity $\varepsilon$ and conductivity $\sigma$ with output(4.0 cGy/min, 8.5 cGy/min, 15.6 cGy/min, 19.3 cGy/min) was observed. A series of independent measurements were also performed to evaluate reproducibility and revealed less than 1% deviation in a day and 3% deviation in a long term. Charge and current showed the dependence on the interval between measurements, the smaller the interval was, the bigger the difference between initial reading and next reading was. At least in 20 minutes of next reading reached an initial value. It may indicate that the polymers were exhibiting an electret state for a while. These results can be explained by the internal polarization associated with the production of electron-hole pairs by secondary electrons, the change of conductivity and the equilibrium due to recombination etc. Heating to the sample made the reading value increase in a short time, it may be interpreted that the internal polarization was released due to heating and it contributed the number of charge carriers to increase when the samples was again irradiated. The linearity and reproducibility of the samples with the applied voltage and absorbed dose and a large amount of charge measured per unit volume compared with the other chambers give the feasibility of a radiation detector and make it possible to reduce the volume of a detector.

  • PDF

Evaluation on Reproducibility of Low-Dose Kidney Scan in Dynamic Kidney Scan (동적신장검사에서 저선량을 사용한 신장검사의 재현성 평가)

  • Lee, Jaesang;Lee, Kyuchan;Lee, Seunghwan;Bae, Seongbok;Park, Jongyeop
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Purpose Dynamic kidney scan is a typical imaging technique that visualizes kidney function. Reproducibility of dynamic kidney scans has been evaluated by comparing low-dose kidney scans with low-dose radiopharmaceutical and standard dynamic kidney scan. With this comparative study, if reproducibility is superb, the dynamic kidney scan method with reduced radioactivity to patients is to be utilized and radiation exposure to patient is to be reduced. Materials and Methods For gamma camera, Orbiter, SymbiaE (Siemens, Germany) was used. Among patients who had used 370 Mbq (10 mCi) from January of 2013 to February 2014 and other patients who had used 185 Mbq (5 mCi) from March of 2014 to July of 2015 with identical condition, 21 subjects using DTPA and 20 subjects using $MAG_3$, 41 subjects in total, had been selected as subjects for data. From renogram of the result image, frame of the peak point was selected. Then, region of interest of kidney and background had been selected and Kidney to Background Ratio has been calculated for comparison. Results In tests using DTPA, kidney to background ratio when using 370 Mbq was $5.67{\pm}0.8$ at average while it was $5.62{\pm}0.87$ when using 185 Mbq, which didn't show much difference. Also in the tests using $MAG_3$, kidney to background ratio when using 370 Mbq was $14.95{\pm}2.58$ at average and $14.56{\pm}2.02$ in 185 Mbq, which neither showed much difference. In paired sample t-test, p-value was 0.566 in DTPA and 0.363 in $MAG_3$, which confirmed that there was no difference between the groups. Conclusion In identical patients, when dose was decreased from 370 Mbq to 185 Mbq, reproducibility of dynamic kidney scan was proven to be excellent. Low-dose Dynamic kidney scan can achieve results with fine reproducibility without improvement in performance of gamma camera and is expected to reduce radiation exposure to patient.

  • PDF

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.