• Title/Summary/Keyword: Gamma Imager

Search Result 17, Processing Time 0.024 seconds

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Comparative study of the pulse shape discrimination (PSD) performance of pixelated stilbene and plastic scintillator (EJ-276) arrays for a coded-aperture-based hand-held dual-particle imager

  • Jihwan Boo ;Manhee Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1677-1686
    • /
    • 2023
  • As the demand for the detection of special nuclear materials (SNMs) increases, the use of imaging instruments that can sensitively image both gamma-ray and neutron signatures has become necessary. This study compared the pulse shape discrimination (PSD) performance of gamma/neutron events when employing either a pixelated stilbene or a plastic (EJ-276) scintillator array coupled to a silicon photomultiplier (SiPM) array in a dual-particle imager. The stilbene array allowed a lower energy threshold above which neutron and gamma-ray events can be clearly distinguished. A greater number of events can, therefore, be used when forming both gamma-ray and neutron images, which shortens the time required to acquire the images by nearly seven times.

Digital n-γ Pulse Shape Discrimination in Organic Scintillators with a High-Speed Digitizer

  • Kim, Chanho;Yeom, Jung-Yeol;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.53-63
    • /
    • 2019
  • Background: As neutron fields are always accompanied by gamma rays, it is essential to distinguish neutrons from gamma rays in the detection of neutrons. Neutrons and gamma rays can be separated by pulse shape discrimination (PSD) methods. Recently, we performed characterization of a stilbene scintillator detector and an EJ-301 liquid scintillator detector with a high-speed digitizer DT5730 and investigated optimized PSD variables for both detectors. This study is for providing a basis for developing fast neutron/gamma-ray dual-particle imager. Materials and Methods: We conducted PSD experiments using stilbene scintillator and EJ-301 liquid scintillator and evaluated neutron and gamma ray discriminability of each PSD method with a $^{137}Cs$ gamma source and a $^{252}Cf$ neutron source. We implemented digital signal processing techniques to apply two PSD methods - the charge comparison (CC) method and the constant time discrimination (CTD) method - to distinguish neutrons from gamma rays. We tried to find optimized PSD variables giving the best discriminability in a given experimental condition. Results and Discussion: For the stilbene scintillator detector, the charge comparison method and the constant time discrimination method both delivered the PSD FOM values of 1.7. For the EJ-301 liquid scintillator detector, both PSD methods delivered the PSD FOM values of 1.79. With the same PSD variables, PSD performance was excellent in $300{\pm}100keVee$, $500{\pm}100keVee$, and $700{\pm}100keVee$ energy regions. This result shows that we can achieve an effective discrimination of neutrons from gamma rays using these scintillator detector systems. Conclusion: We applied both PSD methods to a stilbene and a liquid scintillator and optimized the PSD performance represented by FOM values. We observed a good separation performance of both scintillators combined with a high-speed digitizer and digital PSD. These results will provide reference values for the dual-particle imager we are developing, which can image both fast neutrons and gamma rays simultaneously.

Pulse shape discrimination using a stilbene scintillator array coupled to a large-area SiPM array for hand-held dual particle imager applications

  • Jihwan Boo;Mark D. Hammig;Manhee Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.648-654
    • /
    • 2023
  • A dual-particle imager (DPI) is configured in a hand-held form factor, then one can efficiently and conveniently deploy the DPI to detect the presence of special nuclear materials (SNM) and identify any isotopic variations that differ from their natural abundances. Here we show that by maximizing the areal coupling between a pixelated scintillator array and the partitioned photosensor readout such as a silicon photomultiplier (SiPM), the information utilization of the gamma-ray and neutron information in the radiation field can be enhanced, thus enabling one to rapidly acquire spatial maps of the distributions on gamma-ray and neutron emitters.

The Study for the Method of Fast and Efficient Gamma-ray Detection for the Stereo Gamma-ray Ddetection System (스테레오 감마선 탐지장치의 고속 방사선 탐지기법에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1253-1258
    • /
    • 2014
  • In this paper, we propose the fast and efficient detection method using the continuous measurement technique for the gamma-ray signal acquisition. This method is improved than the conventional method for the getting information of the radiation distribution. First, we implement the stereo radiation detection system using gamma-ray sensors and the motion controller. We apply continuous measurement technique to the gamma-ray detector and conduct gamma-ray irradiation test for the comparison of detection techniques. The results show that the continuous measurement technique has the high efficient performance than the conventional method.

Development and performance evaluation of large-area hybrid gamma imager (LAHGI)

  • Lee, Hyun Su;Kim, Jae Hyeon;Lee, Junyoung;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2640-2645
    • /
    • 2021
  • We report the development of a gamma-ray imaging device, named Large-Area Hybrid Gamma Imager (LAHGI), featuring high imaging sensitivity and good imaging resolution over a broad energy range. A hybrid collimation method, which combines mechanical and electronic collimation, is employed for a stable imaging performance based on large-area scintillation detectors for high imaging sensitivity. The system comprises two monolithic position-sensitive NaI(Tl) scintillation detectors with a crystal area of 27 × 27 cm2 and a tungsten coded aperture mask with a modified uniformly redundant array (MURA) pattern. The performance of the system was evaluated under several source conditions. The system showed good imaging resolution (i.e., 6.0-8.9° FWHM) for the entire energy range of 59.5-1330 keV considered in the present study. It also showed very high imaging sensitivity, successfully imaging a 253 µCi 137Cs source located 15 m away in 1 min; this performance is notable considering that the dose rate at the front surface of the system, due to the existence of the 137Cs source, was only 0.003 µSv/h, which corresponds to ~3% of the background level.

Characterization of a CLYC Detector and Validation of the Monte Carlo Simulation by Measurement Experiments

  • Kim, Hyun Suk;Smith, Martin B.;Koslowsky, Martin R.;Kwak, Sung-Woo;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Background: Simultaneous detection of neutrons and gamma rays have become much more practicable, by taking advantage of good gamma-ray discrimination properties using pulse shape discrimination (PSD) technique. Recently, we introduced a commercial CLYC system in Korea, and performed an initial characterization and simulation studies for the CLYC detector system to provide references for the future implementation of the dual-mode scintillator system in various studies and applications. Materials and Methods: We evaluated a CLYC detector with 95% $^6Li$ enrichment using various gamma-ray sources and a $^{252}Cf$ neutron source, with validation of our Monte Carlo simulation results via measurement experiments. Absolute full-energy peak efficiency values were calculated for gamma-ray sources and neutron source using MCNP6 and compared with measurement experiments of the calibration sources. In addition, behavioral characteristics of neutrons were validated by comparing simulations and experiments on neutron moderation with various polyethylene (PE) moderator thicknesses. Results and Discussion: Both results showed good agreements in overall characteristics of the gamma and neutron detection efficiencies, with consistent ~20% discrepancy. Furthermore, moderation of neutrons emitted from $^{252}Cf$ showed similarities between the simulation and the experiment, in terms of their relative ratios depending on the thickness of the PE moderator. Conclusion: A CLYC detector system was characterized for its energy resolution and detection efficiency, and Monte Carlo simulations on the detector system was validated experimentally. Validation of the simulation results in overall trend of the CLYC detector behavior will provide the fundamental basis and validity of follow-up Monte Carlo simulation studies for the development of our dual-particle imager using a rotational modulation collimator.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Verification of Extended Source-To-Imager Distance (SID) Correction for Portal Dosimetry

  • Son, Jaeman;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • This study aimed to evaluate and verify a process for correcting the extended source-to-imager distance (SID) in portal dosimetry (PD). In this study, eight treatment plans (four volumetric modulated arc therapy and four intensity-modulated radiation therapy plans) at different treatment sites and beam energies were selected for measurement. A Varian PD system with portal dose image prediction (PDIP) was used for the measurement and verification. To verify the integrity of the plan, independent measurements were performed with the MapCHECK device. The predicted and measured fluence were evaluated using the gamma passing rate. The output ratio was defined as the ratio of the absolute dose of the reference SID (100 cm) to that of each SID (120 cm or 140 cm). The measured fluence for each SID was absolutely and relatively compared. The average SID output ratios were 0.687 and 0.518 for 120 SID and 140 SID, respectively; the ratio showed less than 1% agreement with the calculation obtained by using the inverse square law. The resolution of the acquired EPIDs were 0.336, 0.280, and 0.240 for 100, 120, and 140 SID, respectively. The gamma passing rates with PD and MapCHECK exceeded 98% for all treatment plans and SIDs. When autoalignment was performed in PD, the X-offset showed no change, and the Y-offset decreased with increasing SID. The PD-generated PDIP can be used for extended SID without additional correction.