DOI QR코드

DOI QR Code

Pulse shape discrimination using a stilbene scintillator array coupled to a large-area SiPM array for hand-held dual particle imager applications

  • Jihwan Boo (Department of Nuclear Engineering, Seoul National University) ;
  • Mark D. Hammig (Department of Nuclear Engineering & Rad. Sci, University of Michigan) ;
  • Manhee Jeong (Department of Nuclear and Energy Engineering, Jeju National University)
  • Received : 2022.04.08
  • Accepted : 2022.10.14
  • Published : 2023.02.25

Abstract

A dual-particle imager (DPI) is configured in a hand-held form factor, then one can efficiently and conveniently deploy the DPI to detect the presence of special nuclear materials (SNM) and identify any isotopic variations that differ from their natural abundances. Here we show that by maximizing the areal coupling between a pixelated scintillator array and the partitioned photosensor readout such as a silicon photomultiplier (SiPM), the information utilization of the gamma-ray and neutron information in the radiation field can be enhanced, thus enabling one to rapidly acquire spatial maps of the distributions on gamma-ray and neutron emitters.

Keywords

Acknowledgement

This work was supported by Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2103085).

References

  1. G.W. Phillips, D.J. Nagel, T. Coffey, A Primer of the Detection of Nuclear and Radiological Weapons, Center for Technology and National Security Policy National Defense University, 2005 available at, https://apps.dtic.mil/sti/pdfs/ADA436197.pdf.
  2. NRC, Special Nuclear Material, US Nuclear Regulatory Commission, USA, available at: http://www.nrc.gov/materials/sp-nucmaterials.html.
  3. J. Medalia, Detection of Nuclear Weapons and Materials: Science, Technologies, Observations, CRS Report for Congress, 2009, R40154.
  4. R.C. Runkle, D.L. Chichester, S.J. Thompson, Rattling nucleons: new developments in active interrogation of special nuclear material, Nucl. Instrum. Methods Phys. Res. A 663 (2012) 75-95. https://doi.org/10.1016/j.nima.2011.09.052
  5. M.C. Hamel, et al., Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification, Sci. Rep. 7 (2017) 1-10. https://doi.org/10.1038/s41598-016-0028-x
  6. P.A. Hausladen, et al., Fast-neutron Coded-Aperture Imaging of Special Nuclear Material Configurations, 53rd Annual Meeting of the INMM, Orlando, Fla, USA, 2012.
  7. X. Liang, et al., Self-supporting design of a time-encoded aperture, gamma-neutron imaging system, Nucl. Instrum. Methods Phys. Res. A 951 (2020), 162964.
  8. M.J. Cieslak, K.A. Gamage, R. Glover, C.J. Taylor, Pulse shape discrimination performance of a pixelated plastic scintillator (EJ-299-34) for a coded-aperture based dual particle imaging system, J. Instrum. 14 (2019), 07017.
  9. M. Sweany, P. Marleau, S. Hammon, G. Kallenbach, J.K. Polack, Design and Evaluation of a Pixelated PSD-Capable Scintillator Detector with SiPM Readout, Sandia Natl. Lab., Livermore, 2019. No. SAND2019-10315.
  10. M.L. Ruch, M. Flaska, S.A. Pozzi, Pulse shape discrimination performance of stilbene coupled to low-noise silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. A 793 (2015) 1-5. https://doi.org/10.1016/j.nima.2015.04.053
  11. M.P. Taggart, P.J. Sellin, Comparison of the pulse shape discrimination performance of plastic scintillators coupled to a SiPM, Nucl. Instrum. Methods Phys. Res. A 908 (2018) 148-154. https://doi.org/10.1016/j.nima.2018.08.054
  12. J. Boo, M.D. Hammig, M. Jeong, Compact lightweight imager of both gamma rays and neutrons based on a pixelated stilbene scintillator coupled to a silicon photomultiplier array, Sci. Rep. 11 (2021) 1-14. https://doi.org/10.1038/s41598-020-79139-8
  13. C. Kim, J.Y. Yeom, G. Kim, Digital n-γ pulse shape discrimination in organic scintillators with a high-speed digitizer, J. Radiat. Prot. Res. 44 (2019) 53-63. https://doi.org/10.14407/jrpr.2019.44.2.53
  14. J. Boo, M.D. Hammig, M. Jeong, Row-column readout method to mitigate radiographic-image blurring from multipixel events in a coded-aperture imaging system, IEEE Trans. Nucl. Sci. 68 (2021) 1175-1183. https://doi.org/10.1109/TNS.2021.3066414
  15. M. Jeong, M.D. Hammig, Comparison of gamma ray localization using system matrixes obtained by either MCNP simulations or ray-driven calculations for a coded-aperture imaging system, Nucl. Instrum. Methods Phys. Res. A 954 (2020), 161353.
  16. A. Lintereur, J. Ely, J. Stave, B. Macdonald, Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene, Pacific NW, Natl. Lab., 2012. PNNL-21609.
  17. N. Zaitseva, et al., Plastic scintillators with efficient neutron/gamma pulse shape discrimination, Nucl. Instrum. Methods Phys. Res. A 668 (2012) 88-93. https://doi.org/10.1016/j.nima.2011.11.071
  18. M. Jeong, B. Van, B.T. Wells, L.J. D'Aries, M.D. Hammig, Comparison between pixelated scintillators: CsI(Tl), LaCl3(Ce) and LYSO(Ce) when coupled to a silicon photomultipliers array, Nucl. Instrum. Methods Phys. Res. A 893 (2018) 75-83. https://doi.org/10.1016/j.nima.2018.03.024
  19. J. Boo, S. Park, S. Hyeon, M. Jeong, Coded-aperture based dual particle imager for the measurement of dose rate of both gamma-ray and neutron, in: 2021 Fall Meeting of Korean Association of Radiation Protection, Jeju, South Korea, 2021. November 24-26.