Yavari, Parvin;Abadi, Alireza;Amanpour, Farzaneh;Bajdik, Chris
Asian Pacific Journal of Cancer Prevention
/
v.13
no.5
/
pp.1829-1831
/
2012
Background: The generalized gamma distribution statistics constitute an extensive family that contains nearly all of the most commonly used distributions including the exponential, Weibull and log normal. A saturated version of the model allows covariates having effects through all the parameters of survival time distribution. Accelerated failure-time models assume that only one parameter of the distribution depends on the covariates. Methods: We fitted both the conventional GG model and the saturated form for each of its members including the Weibull and lognormal distribution; and compared them using likelihood ratios. To compare the selected parameter distribution with log logistic distribution which is a famous distribution in survival analysis that is not included in generalized gamma family, we used the Akaike information criterion (AIC; r=l(b)-2p). All models were fitted using data for 369 women age 50 years or more, diagnosed with stage IV breast cancer in BC during 1990-1999 and followed to 2010. Results: In both conventional and saturated parametric models, the lognormal was the best candidate among the GG family members; also, the lognormal fitted better than log-logistic distribution. By the conventional GG model, the variables "surgery", "radiotherapy", "hormone therapy", "erposneg" and interaction between "hormone therapy" and "erposneg" are significant. In the AFT model, we estimated the relative time for these variables. By the saturated GG model, similar significant variables are selected. Estimating the relative times in different percentiles of extended model illustrate the pattern in which the relative survival time change during the time. Conclusions: The advantage of using the generalized gamma distribution is that it facilitates estimating a model with improved fit over the standard Weibull or lognormal distributions. Alternatively, the generalized F family of distributions might be considered, of which the generalized gamma distribution is a member and also includes the commonly used log-logistic distribution.
Proceedings of the Korean Society of Agricultural Engineers Conference
/
2003.10a
/
pp.439-442
/
2003
This study was conducted to choose optimal distribution and to estimate properly parameters for the derivation of design rainfall in Gamma Family. Design rainfall derived by Gamma Family Distributions were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE) for the consecutive durations of 1, 3, 6, 12, 24, 36, 48 and 72hr and 65 regions all over the regions except Cheju and Wulreung islands in Korea. Consequently, Design rainfall derived by Indirect Method of Moments in the Log-Pearson Type 3 distribution are seemed to be more reasonable than those of other distributions in Gamma Family.
Gamma distributions are some of the most popular models for hydrological processes. In this paper, a very flexible family which contains the gamma distribution as a particular case is introduced. Evidence of flexibility is shown by examining the shape of its pdf and the associated hazard rate function. A comprehensive treatment of the mathematical properties is provided by deriving expressions for the nth moment, moment generating function, characteristic function, Renyi entropy and the asymptotic distribution of the extreme order statistics. Estimation and simulation issues are also considered. Finally, a detailed application to drought data from the State of Nebraska is illustrated.
Ortega, Edwin M.M.;Cordeiro, Gauss M.;Hashimoto, Elizabeth M.;Suzuki, Adriano K.
Communications for Statistical Applications and Methods
/
v.24
no.1
/
pp.43-65
/
2017
We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time for the event follows the gamma-G family of distributions. The extended family of gamma-G failure-time models with long-term survivors is flexible enough to include many commonly used failure-time distributions as special cases. We consider a frequentist analysis for parameter estimation and derive appropriate matrices to assess local influence on the parameters. Further, various simulations are performed for different parameter settings, sample sizes and censoring percentages. We illustrate the performance of the proposed regression model by means of a data set from the medical area (gastric cancer).
In this paper, reliability estimation using Gibbs sampler is considered for the mixture model with Gamma family, Gibbs sampler is derived to compute the features for the posterior distribution. By simulation study, the maximum likelihood estimator and the Gibbs estimator are obtained. A numerical study with a simulated data is provided.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.5
/
pp.867-876
/
2023
In this study, the attributes of the NHPP software development cost model applying the Gamma family distribution (Erlang, Log-Logistic, Rayleigh) were newly analyzed, and after comparing with the Goel-Okumoto basic model to verify the properties of the model, the optimal model was also presented based on this. To analyze software reliability, failure time data that occurred randomly during system operation was used, and the calculation of the parameters was solved using the maximum likelihood estimation. As a result of comprehensive evaluation through various attribute analysis (mean value function, development cost, optimal release time), it was confirmed that the Rayleigh model had the best performance. Through this study, the attributes of the software development cost model applying the Gamma family distribution, which has no previous research case, were newly identified. Also, basic design data could also be presented so that developers can efficiently utilize this research data at an early stage.
Finite failure NHPP models proposed in the literature exhibit is either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. For the sake of proposing shape parameter of the Gamma family distribution, used the special pattern. Data set, where the underlying failure process could not be adequately described by the knowing models, which motivated the development of the Gamma or Weibull model and Gompertz model. Analysis of failure data set that led us to the Gamma or Weibull model and Gompertz model using arithmetic and Laplace trend tests, bias tests was presented in this Paper.
Genetic gains and inbreeding coefficients in a Holstein MOET breeding population were predicted under different conditions relating to the distribution of the number of transferable embryos collected per flush using Monte Carlo simulation. The numbers of transferable embryos collected per flush were determined using five distributions (distributions 1, 3, 5, 7 and 9) with different aspects and similar means. Distributions 1, 3, 5, 7 and 9 were assumed to have gamma distribution's parameters ($\alpha$ and $\beta$) of (1 and 4.4), (3 and 1.47), (5 and 0.88), (7 and 0.63) and (9 and 0.49), respectively. Inbreeding rates were statistically significantly different among distributions but genetic gains were not. Relationships between inbreeding rates and variances of family size could be were clearly distinguished. The highest inbreeding coefficients were predicted in distribution 1 with the largest variance of family size, while distributions 5, 7 and 9 with smaller variance of family size had lower inbreeding coefficients.
Journal of the Korean Data and Information Science Society
/
v.20
no.5
/
pp.933-939
/
2009
The bivariate data in clinical research fields often has two types of failure times, which are mark variable for the first failure time and the final failure time. This paper showed how to generate bootstrap data to get Bayesian estimation for the joint distribution of bivariate survival times. The observed data was generated by Frank's family and the fake date is simulated with the Gamma prior of survival time. The bootstrap data was obtained by combining the mimic data with the observed data and the simulated fake data from the observed data.
The first part of this thesis discusses the Pearson's Curve Family which gives $\beta$distribution, $\Gamma$-distribution, $X^2$-distribution and t-distribution. The second part of this thesis gives some brief process of calculations for normal distribution density and t-distribution density by the 7-th type Curve of Pearson's Curve Family. Finally, a conclusion arrives that Student(Gosset) could not find out his famous 'Student's t-distribution' without his attending of 'Pearson's Differential Equation' class taught by Pearson himself when he was a senior student. However, if he had got a professorship at the Pearson Statistics Laboratory, the University of London, then he could not have found 'Student's t-distribution' for small sampling technique of modern statistics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.