• Title/Summary/Keyword: Gamma Camera

Search Result 291, Processing Time 0.023 seconds

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

The Evaluation of Lateral Scatter Ray of Gamma Camera (Gamma Camera에 있어 측면 선란선의 영향에 대한 평가)

  • Kim, Jae-Il;Lee, Eun-Byeol;Cho, Seong-Wook;Noh, Kyeong-Woon;Kang, Keon-Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.46-50
    • /
    • 2018
  • Purpose Generally, a collimator that installed in front of detector set a direction of gamma ray and remove a scatter ray. By the way, a lateral or oblique scatter ray is detected into crystal through collimator. At this study, we will evaluate a mount of count and spectrums of lateral scatter ray. Materials and Methods We used the SKY LITE (philips, netherlands) as a gamma camera, and $^{99m}Tc$, 1.11 GBq point source as a phantom. we put this point source at backside 50 cm of detector. After acquiring this for 1 min, we turned a detector next 10 degrees. Likely this, we acquired images at every 10 degrees from $0^{\circ}$ to $360^{\circ}$, analyzed images and spectrums. In case of patient study, we choose a 3 phase bone scan patient who had a hand disease, because scatter rays from body would detect on crystal. After acquiring blood flow and blood pool images, we analyzed images and spectrums. Additional, we put a lead gown on patient's hand, body. And then we compared and evaluated 3 type blood pool images (non lead gown, lead gown on a hand and on body). Results In case of phantom study, scatter ray counts at backside ($270^{\circ}-90^{\circ}$) are same with a background count. By the way, counts of scatter ray of oblique side ($0^{\circ}-50^{\circ}$, $220^{\circ}-270^{\circ}$) are 100-600 cps, furthermore, counts at frontside are over 4 Mcps. In case of patient study, a counts of hand blood pool scan are 1510 cps. But counts of hand with lead gown on hands and on body are each 1554 cps, 1299 cps. Conclusion Therefore, even though there is a collimator in front of detector, lateral scatter rays detect on crystal and affect to images and spectrums. Especially, if there is a high activity source at outside of detector when we examine low activity organs like hands or foot, we have to shield and remove the source at outside for a good image.

Influence of Void on Performance of Industrial SPECT System (공정 내 기포가 산업용 SPECT의 성능에 미치는 영향)

  • Park, Jang Guen;Jung, Sung-Hee;Kim, Jong Bum;Moon, Jinho;Kim, Chan Hyeong
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.23-27
    • /
    • 2014
  • Industrial single photon emission computed tomography (SPECT) is an useful technique to investigate the dynamic behavior of process flow. In the present study, to evaluate the influence of a void on the performance of industrial SPECT, industrial SPECT with various radioisotope sources and gas holdups was modeled by the Monte Carlo simulation. The results are very encouraging; that is, the void little influences the performance of industrial SPECT, which means that industrial SPECT could be a suitable tool to investigate the dynamic characteristics of the flow in a water-air phase process.

Camera for Quasars in Early Universe

  • Park, Won-Kee;Pak, Soojong;Im, Myungshin;Choi, Changsu;Jeon, Yiseul;Chang, Seunghyuk;Jeong, Hyeonju;Lim, Juhee;Kim, Eunbin;Choi, Nahyun;Lee, Hye-In;Kim, Sanghyuk;Jeong, Byeongjoon;Ji, Taegeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2013
  • Camera for QUasars in EArly uNiverse (CQUEAN) is an optical CCD camera system made by Center for Exploration of the Origin of the Universe (CEOU). CQUEAN is developed for follow-up observation of red sources such as high-redshift quasar candidates ($z{\geq}5$), gamma-ray bursts (GRB), brown dwarfs and young stellar objects. The CQUEAN is composed of a science camera with deep-depletion CCD chip which is sensitive at around $1{\mu}m$, a set of custom-made wide-band filters for detection of quasar candidates at z~5, and a guide camera. A focal reducer was developed to secure $4.8^{\prime}{\times}4.8^{\prime}$ field of view, and an in-house user software for efficient data acquisition. CQUEAN was attached to 2.1m Otto Struve Telescope in McDonald Observatory, USA, in August 2010. About 1000 quasar candidates including 3 confirmed with follow-up spectroscopy, have been observed so far, and many high-z galaxy cluster candidates, GRBs and supernovae were also observed. And monitoring of HBC 722, a young stellar object, is under way since 2011. Further enhancement of CQUEAN including the introduction of narrow-band filters is planned.

  • PDF

Development of Portable Gamma Probe and Its Basic Performance Test (이동형 감마프로브 개발과 기본성능 평가)

  • Kim, H.J.;Kwark, C.;Choi, Y.;Yang, M.K.;Bong, J.K.;Lee, S.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.216-219
    • /
    • 1997
  • We are developing a portable multipurpose gamma counting and imaging probe that will be useful for many applications in nuclear medicine including radioimmunoguided surgery in the detection and treatment of malignant tumors. Any diagnostic information provided by CT, MRI, PET, SPECT or gamma camera imaging prior to surgery obviously is very important, but current techniques are limited in many instances. To overcome some of these limitations, the portable multipurpose gamma probe is being developed. The gamma probe consists of NaI(Tl) crystal with 1" dia $\times$ 0.5" thick and singlechannel photomultiplier tube (SC-PMT) for counting, and 3" dia $\times$ 0.375" and multichannel photomultiplier tube (MC-PMT) for imaging, nuclear instrument module (NIM), position circuits, interface, and PC. The energy resolution using Tc-99m was measured as 14% and the spatial resolution using 3mm dia green LED was measured as 2.9mm. These priliminary results indicate that the currently developing probe is very promising and could be very useful for many applications in nuclear medicine.

  • PDF

Design of an Medical Image Presentation System for a Small Gamma Camera (소형 감마 카메라용 의료영상 표현 시스템 설계)

  • Lee, Su-Jin;Kim, Moon-Hae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.187-190
    • /
    • 2001
  • 요즘 의료 분야는 환자 병력 약제 정보등과 같은 다양한 의료정보가 증가함에 따라 정보화의 요구가 대두되고, 이는 디지털 영상의 등장과 함께 컴퓨터의 도움을 받는 소프트웨어의 개발로 이어지고 있다. 본 논문에서는 이러한 추세에 맞춰, 이전에 개발된 유방암 전용 소형 감마카메라로부터 신호를 획득하여 실시간으로 디지털 영상을 만들어 내고 화면에 디스플레이하는 의료영상 표현 시스템을 설계하고 구현한다.

  • PDF

Performance Evaluation of Component Detectors of Double-scattering Compton Camera (이중 산란형 컴프턴 카메라 구성 검출기 성능 평가)

  • Seo, Hee;Park, Jin-Hyung;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik;Lee, Jae-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • Prototype double-scattering Compton camera, which consists of three gamma-ray detectors, that is, two double-sided silicon strip detectors (DSSDs) as scatterer detectors and a NaI(Tl) scintillation detector as an absorber detector, could provide high imaging resolution with a compact system. In the present study, the energy resolution and the timing resolution of component detectors were measured, and the parameters affecting the energy resolution of the DSSD were examined in terms of equivalent noise charge (ENC). The energy resolutions of the DSSD-1 and DSSD-2 were, in average, $25.2keV{\pm}0.8keV$ FWHM and $31.8keV{\pm}4.6keV$ FWHM at the 59.5 keV peak of $^{241}Am$, respectively. The timing resolutions of the DSSD and NaI(Tl) scintillation detector were 57.25 ns FWHM and 7.98 ns FWHM, respectively. In addition, the Compton image was obtained for a point-like $^{137}Cs$ gamma source with double-scattering Compton camera. From the present experiment, the imaging resolution of 8.4 mm FWHM (angular resolution of $8.1^{\circ}$ FWHM), and the imaging sensitivity of $1.5{\times}10^{-7}$ (intrinsic efficiency of $1.9{\times}10^{-6}$) were obtained.