• Title/Summary/Keyword: Gamma Aminobutyric Acid (GABA)

Search Result 311, Processing Time 0.026 seconds

Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments

  • Keun-tae, Park;Mihyang, Oh;Younghye, Joo;Jong-Kwon, Han
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.248-255
    • /
    • 2023
  • Objective: Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. Methods: The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. Results: The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. Conclusion: Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.

Effects of γ-aminobutyric acid and hydrochloric acid on growth performance, nutrient digestibility and fecal score of growing pigs

  • Ding, Zhenyu;Kim, Inho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.489-496
    • /
    • 2019
  • A study was conducted to determine the effects of feeding ${\gamma}$-aminobutyric acid (GABA) and hydrochloric acid (HCl) on the growth performance, nutrient digestibility and fecal score in growing pigs. Ninety Duroc ${\times}$ (Landrace ${\times}$ Large Yorkshire) growing pigs with an average initial body weight (BW) of $25.51{\pm}1.63kg$ were randomly allotted to three treatment groups with 6 replications of 5 pigs per replicate pen for each treatment in a 6-week trial period. The treatments were as follows: 1) basal diet (CON); 2) basal diet with 0.05% GABA and 3) basal diet with 1% of a 10% HCl solution. The results showed that GABA supplementation significantly increased the average daily gain (ADG) (p < 0.05) compared with the control during week 4 and the overall experiment period (0 to 6 weeks). However, HCl supplementation had a numerical increase in the ADG compared with the control. The total tract digestibility of dry matter (DM) was greater in GABA group than the CON (p < 0.05). The supplementation of GABA and HCl in the diet of growing pigs had no significant effect on the fecal scores compared with the CON. Experimental results show that supplementation of 0.05% GABA in the diet of growing pigs had a positive effect on the ADG and DM digestibility in growing pigs.

Production of ${\gamma}-Aminobutyric$ Acid (GABA) by Lactobacillus buchneri Isolated from Kimchi and its Neuroprotective Effect on Neuronal Cells

  • Cho, Yu-Ran;Chang, Ji-Yoon;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • Lactic acid bacteria that accumulated ${\gamma}-aminobutyric$ acid (GABA) in culture medium were screened to identify strains with high GAB A-producing ability. One strain, MS, which was isolated from kimchi, showed the highest GABA-producing ability among the screened strains. MS was identified as Lactobacillus buchneri based on Gram-staining, metabolic characteristics, and 16S rDNA sequence determination, Optimum culture conditions for GABA production were determined: MRS broth containing 5% MSG, 1% NaCl, and 1% glucose, at an initial pH of 5.0, the incubation temperature at $30^{\circ}C$ for 36 h. Under these conditions, MS produced GABA at a concentration of 251 mM with a 94% GABA conversion rate. Moreover, culture extracts of Lb. buchneri MS partially or completely protected neuronal cells against neurotoxicantinduced cell death.

Optimal Conditions for the Production of Gamma-aminobutyric Acid by Enterococcus casseliflavus PL05 Isolated from Oenanthe javanica

  • Choi, Se Mi;Kim, Jeong A;Kim, Geun Su;Kwon, Do Young;Kim, Sang Gu;Lee, Sang yun;Lee, Kang Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • In this study, a new lactic acid bacterium (LAB) that could produce gamma-aminobutyric acid (GABA) was isolated from Oenanthe javanica (water celery) and identified as an Enteroccoccus casseliflavus strain. Until recently, there have been many studies on the gamma-aminobutyric acid producing lactic acid bacterium, as well as on some lactic acid bacterium in Enteroococcs genus, but none on the species E. casseliflavus. Therefore, in the purpose of finding the optimal conditions for GABA production of E. casseliflavus PL05, the effects of several conditions including the type of mediums, growth temperatures, initial pH, growth time, L-mono sodium glutamate (MSG) concentration, and carbon source were tested. The study revealed that the PL05 strain grew better in the Brain Heart Infusion (BHI) medium than in the Man, Rogosa, and Sharpe (MRS) or Tryptic Soy Broth (TSB) medium. Also, similar results were obtained with GABA production conditions. As a result of analysis on the GABA production yield by concentration of MSG, a GABA substrate, the highest production was found at 7% of MSG concentration. However, since similar level of production was found at 5%, it is considered to be more efficient to use 5% MSG concentration. The analysis on the growth and GABA production yield by carbon sources showed the highest results when maltose was used. From the final test under the optimal conditions found, 140.06±0.71 mM of GABA was produced over 24 hours with the conversion rate of 78.95%. Lastly, from the sensitivity analysis on the 10 different antibiotics, including vancomycin, it was found that there were not confirmed cases of resistance.

Effect of Conversion Rate of γ-Aminobutyric acid (GABA) by Yogurt Fermentation with Addition of Nanoparticle Winter Mushroom and Hydroponic Ginseng (팽이 및 수경인삼 분말 및 요구르트 발효에 의한 γ-Aminobutyric acid (GABA)의 전환효율 증진)

  • Shin, Pyung-Gyun;Kim, Hee-Cheong;Yoo, Young-Bok;Kong, Won-Sik;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.13 no.4
    • /
    • pp.334-337
    • /
    • 2015
  • ${\gamma}$-Aminobutyric acid (GABA) is basically neurotrasmitter produced by the decarboxylation of L-glutamic acid catalyzed by glutamic acid decarboxylase (GAD), which was known to convert monosodium glutamate (MSG) to GABA. To investigate enhancement of reversion rate of GABA, the yogurt fermentation with addition of nanoparticle winter mushroom and hydroponic ginseng was used. The conversion rate was revealed to nanoparticle winter mushroom and hydroponic ginseng fermenter (88%) > winter mushroom fermenter (52%) > nanoparticle winter mushroom fermenter (44%). The results showed that nanoparticle winter mushroom and hydroponic ginseng supplemented substrates for enhancement of GABA may be used more effectively as one of potential sources of functional foods.

Characteristics of Potential Gamma-Aminobutyric Acid-Producing Bacteria Isolated from Korean and Vietnamese Fermented Fish Products

  • Vo, Thi Thu-Thao;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • Gamma-aminobutyric acid (GABA) is a neurotransmitter that exerts several physiological functions and positive effects on human health. The aim of this study was to isolate and characterize the strains that had GABA-producing abilities from various fermented fish products. A total of 91 acid-producing strains were isolated from 41 samples of fermented fish products, and 27 strains showing GABA-producing abilities were identified by the 16S rDNA sequences. Among the strains, 31% strains tolerated at high-salt environment of 10-20% throughout the fermentation of fish sauces. The 27 isolates that produced GABA at various concentrations did so in the range of 5 to 454 mM. These GABA-producing isolates were identified as lactic acid bacteria of 14 strains, which included twelve Lactococcus lactis, one Enterococcus faecium, and one Lactococcus pentosus; eight Bacillus cereus group, which included seven B. thuringiensis and one B. cereus; and five Staphylococcus spp. Interestingly, with Vietnamese fish sauces, we mostly identified species of B. thuringiensis and Staphylococcus spp., while with Korean fermented fish products, the majority of the strains identified belonged to L. lactis. Among the strains, B. thuringiensis LH2134 produced the highest levels of GABA at 366 mM among the strains identified from Vietnamese fish sauces, whereas L. lactis LA43, a new strain isolated from Korean jeotgal (salted shrimp paste), produced the highest amount of GABA at 454 mM and the glutamate concentration in the medium was essential for GABA accumulation. Therefore, such the isolates might serve as good starters for development of more GABA-reinforced foods among fermented fish products.

Characterization of the Production of Biogenic Amines and Gamma-Aminobutyric Acid in the Soybean Pastes Fermented by Aspergillus oryzae and Lactobacillus brevis

  • Kim, Nam Yeun;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.464-468
    • /
    • 2015
  • The production of gamma-aminobutyric acid (GABA) using GABA-producing lactic acid bacteria (LAB) has been considered to be an attractive strategy. However, some LAB may produce biogenic amines (BA), which may be of concern from the safety viewpoint. The aim of the present study was to characterize the production of GABA and BA in the soybean pastes fermented by Aspergillus oryzae (A. oryzae) FMB S46471 and GABA-producing Lactobacillus brevis (L. brevis) GABA 100. After a ripening period of 90 days, the levels of BA (putrescine, cadaverine, histamine, and tyramine) and GABA in the fermented soybean were assessed by highperformance liquid chromatography. The soybean pastes fermented by A. oryzae and L. brevis showed a range of 7,130-11,592 mg/kg for GABA, 178-305 mg/kg for tyramine, 139-163 mg/kg for putrescine, 7.4-10.8 mg/kg for histamine, and 7.1-7.9 mg/kg for cadaverine, whereas the soybean pastes fermented by A. oryzae only showed a range of 30-1,671 mg/kg for GABA, 0.8-189 mg/kg for tyramine, 1.3-85 mg/kg for putrescine, up to 3.6 mg/kg for histamine, and 0.2-2.4 mg/kg for cadaverine. The results showed that the production of GABA was accompanied by the increase in the production of BA, even though the production levels of histamine and cadaverine were very low. This is the first study to simultaneously characterize the production of BA and GABA in GABA-enriched fermented soybean pastes, and warrants further study to minimize the production of BA while optimizing the production of GABA.

Gamma-aminobutyric Acid Content in Commercial Green Tea (시판 녹차의 GABA 함량)

  • Han, Young-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.3 s.99
    • /
    • pp.409-412
    • /
    • 2007
  • The aim of this study was to examine the content of bioactive component, ${\gamma}$-aminobutyric acid (GABA) in 7 commercial green teas. The teas were grown in different regions in Sourhtern Korea, and were picked during the middle of the season. The green tea extracts were each derivatized with 6-aminoquinolyl-N-hydroxy-succinimidyl carbamate(AccQ${\cdot}$Fluor), and GABA was detected by a fluorescence detector at arf excitation of 250 nm and emission of 395 nm. The GABA contents varied depending on the regions where the green tea samples were produced. There was no significant difference in GABA contents between samples A and C, where it ranged from from 45.21${\pm}$0.99 (nmol/g) to 63.83${\pm}$0.61 (nmol/g): however, a significantly different amount of GABA was found in the green tea produced in B. The highest GABA content was 210.67${\pm}$0.85 (nmol/g), whereas the lowest content was 3.88${\pm}$0.71 (nmol/g). This variation in GABA contents was probably due to the regional differences, even within the same location, as well as the processing technology, which may retain or develop more GABA components in the final green tea.

Production of gamma-Aminobutyric Acid (GABA) by Lactobacillus plantarum subsp. plantarum B-134 Isolated from Makgeolli, Traditional Korean Rice Wine (한국전통주인 막걸리로부터 분리한 Lactobacillus plantarum subsp. plantarum B-134의 gamma-aminobutyric acid (GABA)의 생산)

  • Lee, Hyun-Ju;Son, Jae-Young;Lee, Sang-Jae;Lee, Han-Seung;Lee, Bae-Jin;Choi, In-Soon;Sohn, Jae Hak
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.567-574
    • /
    • 2017
  • This study is to isolate and identify ${\gamma}$-amino butyric acid (GABA) producing lactic acid bacteria (LAB) from Makgeolii, traditional Korean rice wine and then establish the optimal culture conditions for GABA production. Sixty four LAB from Makgeolli were isolated according to the characteristics of the shape and color of the colony grown on MRS agar plate. The GABA production of the isolated strain cultured in MRS broth contained 1% MSG (mono-sodium glutamate) were determined and evaluated by TLC and HPLC analysis. Strain B-134 was selected for highest GABA production. From the analysis of 16S rRNA and glutamate decarboxylase B (gadB) gene sequences, strain B-134 was tentatively identified as a Lactobacillus plantarum subsp. plantarum B-134. Effects of culture parameters, including glutamic acid level, culture temperature, NaCl level, and pH on GABA production were investigated for culture optimization. The optimum culture condition for GABA production by B-134 were culture temperature of $37^{\circ}C$, pH of 5.7, NaCl content of 0% (w/v) and MSG content of 3% (w/v), which produced 25 mM of GABA during cultivation time of 48 hr. From these results, strain B-134 is expected to be utilized as useful microorganisms for GABA-enriched health beneficial food.

Effect of Pretreatment Conditions on ${\gamma}-Aminobutyric$ Acid Content of Brown Rice and Germinated Brown Rice (전처리 조건이 현미 및 발아현미의 ${\gamma}-aminobutyric$ acid 함량에 미치는 영향)

  • Choi, Hee-Don;Park, Yong-Kon;Kim, Yun-Sook;Chung, Chang-Hwa;Park, Young-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.761-764
    • /
    • 2004
  • Effects of pretreatment conditions on ${\gamma}-aminobutyric$ acid (GABA) contents of brown rice and germinated brown rice were investigated. As steeping time increased, GABA contents of brown rices increased gradually. The highest GABA content, 3.33mg/100g, was found in brown rice steeped at $40^{\circ}C$ for 8 hr. GABA content of brown rice decreased significantly at pH 8 (p<0.05), but changed slightly at pH of steeping solution ranging 4-7. Steeping of brown rices in glutamate solution increased GABA contents. Brown rice steeped in glutamate solution at 200-300 ppm showed GABA content between $4.09{\pm}0.48-4.11{\pm}0,47mg/100g$, which was much higher than that of untreated brown rice. Anaerobic treatment of brown rices using $N_2$ gas increased GABA contents, ranging from $4,70{\pm}0.49\;to\;4.92{\pm}0.83mg/100g$. Germinated brown rice steeped in glutamate solution under anaerobic condition had GABA content of $5.92{\pm}0.72mg/100g$, two-fold higher than that of untreated brown rice, $3.05{\pm}0.67mg/100g$. Optimum pretreatment condition established in this study could significantly increase GABA content in germinated brown rice.