• Title/Summary/Keyword: Galvannealed

Search Result 74, Processing Time 0.031 seconds

A Study on the Spot Weldability of High Strength Steel Sheet and Two Stories Galvannealed High Strength Steel Sheet (고장력강판 및 2층아연도금된 고장력 강판의 점용접성에 관한 연구)

  • 신현일;강성수
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.56-62
    • /
    • 1994
  • The spot weldability of high strength steel sheet and two stories galvannealed high strength steel sheet has been studied. 1) Tensile shear strength decreased inversely as welding current increased over 12KA in the case of two stories galvannealed high strength steel sheet. 2) When heat flux input over 12KA, hardening region become narrow in case of two stories galvannealed high strength steel sheet. 3) The size of hardening region affect the strength of nuggets.

  • PDF

Effect of Alloy Elements on Galvannealed Coating Quality in IF High Strength Steels (IF 고강도 합금화 용융아연도금강판의 표면품질에 미치는 합금원소의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.289-295
    • /
    • 2008
  • The effect of the alloy elements(Si/Mn) ratio on the coating quality including wettabilty with molten zinc, galvannealing kinetics and crater has been investigated in interstitial-free high strength steel(IFHSS) containing Si and Mn. When the Si/Mn ratio was below 0.75, IF-HSS exhibited a good wettability leading to a good galvannealed coating quality after annealing at $800^{\circ}C$ for 40s in $15%H_2-N_2$ mixed gas with dew point $-60^{\circ}C$. In contrast, the wettability and galvannealed coating quality were deteriorated in the Si/ Mn ratio above 0.75. It is shown that they have relevance to oxides forms by selective oxidation on the steel surface. The oxide particles dispersed on the steel surface with a surface coverage of below 40% resulted in good wettability and galvannealed coating quality. The oxide particle is mainly consisted of $Mn_2SiO_4$ with low contact angle in molten zinc. On the other hand, the continuous oxide layer on the steel surface, such as network- and film-type,caused to poor wettability and galvannealed coating quality. The coverage of oxide layer was above 80%, and its chemical species was $SiO_2$ with high contact angle in molten zinc. Consequently, the Si/Mn alloy ratio played an importance role in galvannealed coating quality of IF-HSS.

Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles (자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동)

  • Park, Chun-Dal;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.

A study on frictional characteristics in galvannealed sheet steel using one flat friction test (편마찰 실험을 이용한 합금화 온도별 GA 강판의 마찰특성에 관한 연구)

  • Jeon Sung-Jin;Lee Jung-Min;Kim Sang-Ju;Kim Byung-Min
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1575-1578
    • /
    • 2005
  • As GA(Galvannealed sheet steel, GA) has good corrosion resistance, weldability and paintability as well as excellent stamping formability it's demand is rapidly increasing for automotive panel. But the layer of the Galvannealed sheet steel is easy to have a coating layer such as powdering and flaking in the press process because it is composed of Fe-Zn alloy. Therefore, the process condition is properly required to form the surface treated sheet steel. The frictional characteristics with dies are changed according to the annealing temperature, $505^{\circ}C,\;515^{\circ}C\;and\;540^{\circ}C$ during the process. To obtain the frictional characteristics of GA sheet steel in this study, on flat friction test is conducted. The friction coefficient is compared with the variation of pressure and velocity, viscosity of lubricant at the various galvannealed temperatures.

  • PDF

A study on the weldability of galvannealed steel in spot welding process (Galvannealed Steel의 点溶接의 溶接性에 관한 硏究)

  • 류병길;강춘식
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.64-72
    • /
    • 1987
  • The Weldability of gavannealed steel using spot welder has been studied. The Results obtained are a follows; 1) Welds size and strength were increased depending on the welding time and welding current. But, the increasing rate has been decreased. 2) Deposited zinc has affected on the wear of welding tips and growth of welds but has not affected the weld's structures. 3) On shear testing of the specimen, button fracture has been observed and the value was approximately 540Kg (welds dia. approximately .phi.4mm)

  • PDF

Estimations of the Adhesion Strength of Galvannealed Coatings on Coated Sheet Using Single Lap-Shear Test (단일겹치기이음시험을 이용한 합금화용융아연코팅강판의 코팅층 접합강도 평가)

  • Lee, Jung-Min;Lee, Chan-Joo;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.560-567
    • /
    • 2009
  • This paper was designed to estimate the adhesion strength of galvannealed coatings on steel sheets. The adhesion strength were evaluated using single lap - shear tests where the lap joint was bonded by structural adhesive. Tests were performed for overlap length of 5mm, 10mm and 15 mm and three directions (0, 45, 90) of steel sheets used as the adherend of the overlap joint. After the tests, FE simulations of the single lap-shear test were also carried out to observe the stress distribution in the interface between the adhesive and the coated sheet. The results showed that the joint failure loads obtained from the tensile tests of bonded single lap-joints were the same, regardless of overlap lengths and directions of steel sheets. Also, the failure of galvannealed coatings greatly depended on shear stress distribution in the interface and the value was about 30MPa.

Investigation of Streaky Mark Defect on Hot Dip Galvannealed IF Steel

  • Xinyan, Jin;Li, Wang;Xin, Liu
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2010
  • Interstitial-free (IF) steels are widely used for car body material. However, a few types of streaky mark defect are commonly found on hot dip galvannealed (GA) IF steel sheets. In the present study, both the phase structure of a streaky mark defect and the microstructure of the substrate just below it were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). It was found that the bright streaky mark area was composed of ${\delta}$ phase while the dark normal area was full of craters. More than half of the grains at the uppermost surface of the substrate just below the streaky mark defect are unrecrystallized grains which could result from lower finish rolling temperature during hot rolling and be kept stable during the annealing process, while almost all the grains in the normal area are equiaxed grains. In order to confirm the effect of the unrecrystallized grains on the coating morphology, hot dip galvannealing simulation experiments were carried out in IWATANI HDPS. It is proved that the unrecrystallized grains accelerate the Fe-Zn reaction rate during galvannealing and result in a flatter coating surface and an even coating thickness. Finally, a formation mechanism of the streaky mark defect on the hot dip galvannealed IF steel sheet was discussed.

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.