• 제목/요약/키워드: Galvanized Steel

검색결과 238건 처리시간 0.022초

유한요소해석을 이용한 EGL 도금조 Polisher Brush의 마모예측 (Wear for Polisher Brush of EGL Plating Cell using Finite Element Analysis)

  • 구자경;노학곤;허성찬;송우진;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.342-345
    • /
    • 2009
  • Electro galvanized steel is electroplated cold roller steel for improving corrosion resistance and paintability, and is widely used in automobiles and home appliances. In the electroplating line for manufacturing electro galvanized steel if plating process is carried out with impurity on conductor roll surface, the defects in manufacturing process occurs because of steel fault. For quality, polishing is always required to separate impurity on surface of conductor roll. In this study, finite element analysis of wear for polisher brush is carried out for replaced time of it.

  • PDF

$CaCO_3$침전능 조절에 의한 금속시편에서의 부식방지 (The Corrosion Control Using CCPP(Calcium Carbonate Precipitation Potential )Index in Metallic Coupons)

  • 이재인;임진경;서상훈;김동윤;신춘환
    • 한국환경과학회지
    • /
    • 제9권6호
    • /
    • pp.505-509
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of $Ca(OH)_2$ and $CO_2$ additions on the corrosion of metal coupons(ductile iron, galvanized steel, copper and stainless steel). Corrosion rate and released metal ion concentration of ductile iron and galvanized steel decreased by adjusting alkalinity, calcium hardness and pH with $Ca(OH)_2$ & $CO_2$ additions on copper and stainless steel were less than those on ductile iron and galvanized steel. When ductile iron coupon was exposed to water treated with Ca(OH)$_2$&$CO_2$, additions, the main components of corrosion product formed on its surface were $CaCO_3$ and $Fe_2 O_3 or Fe_2 O_4$ which often reduce the corrosion rate by prohibiting oxygen transport to the metal surface.

  • PDF

고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰 (Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition)

  • 정영철;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.

자동차용 아연도금강판의 심 용접조건과 용접성에 관한 연구 (A Study on the Welding Conditions of Weldability of Team Welding for Galvanized Steel Sheets of Automotive)

  • 임재규;정균호;국중하
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2001
  • This paper is studied about welding conditions and weldability of seam welding for galvanized steel sheet of automotive. The fuel tank of automobile is made by seam welding to be required of airtight or oiltight. This method have required a short time for welding, simplicity operation progress and little HAZ. Especially, it has more less residual stress and transformation than different welding progress. So, this study is for decreasing the leakage occurrence rate and to make standard operating condition table anyone can operate easily. Therefore, this study is analyzed the optimum conditions of seam welding for making the automobile with galvanized steel sheets by means of observing the microstructure and configuration back projection, RT, tensile-shear strengths test and SEM. Optimum conditions of seam welding obtained as follows, current 17.2-17.6kA speed 1.0m/min weld time 4:10:6 and current 16.5-17.4kA, speed 0.83m/min, weld time 4:10:4 at t1.0, and current, 18.5-18.9kA, speed 0.8m/min, weld time 4:10:4 and current 16.5-17.4kA, speed 0.68m/mi, weld time 4:10:2 at t1.6.

  • PDF

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

아연도금강판의 방식을 위한 새로운 방청안료인 이온 교환된 제올라이트의 방청 성능 (Anti-Corrosion Performance of the Novel Pigment, Ion-Exchanged Zeolite for the Protection of Galvanized Steel)

  • 김정택;정호수;유상수;이근대;박종명
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.745-751
    • /
    • 2011
  • 내부식성이 강화된 새로운 방청안료를 개발하기 위한 연구의 일환으로, 본 연구에서는 높은 내부식성을 제공하는 아연 및 세륨 이온 교환된 제올라이트를 도입하였다. 그리고 이온교환 제올라이트를 이용하여 프라이머 도료 제조 및 도장을 수행한 후, 그것의 방식성능을 측정하였다. 도장을 위한 금속 기재는 아연도금(galvanized, GI) 강판이었고, 도장된 강판의 방식성능은 electrochemical impedance spectroscopy(EIS)와 scanning vibrating electrode technique(SVET)으로 측정되었다. EIS 및 절단면의 내부식성을 확인하기 위한 SVET 측정으로부터 세륨이온 교환된 제올라이트가 가장 높은 효율을 제시하였고, 아연 및 세륨 이온 교환된 제올라이트의 경우 GI 강판에 대하여 cathodic 부식 방지제로 기여함을 확인할 수 있었다.

아연도금 강판의 점용접재의 피로균형에 관한 연구 (Fatigue Behavior of the Single Spot Welded Joint of Zinc Galvanized Steel Sheets)

  • 서창민;강성수;오상표
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.21-34
    • /
    • 1992
  • The behavior of fatigue crack growth in the single spot welded joint of zinc galvanized steel sheets was studied experimentally and analytically based on fracture mechanics. Axial tension fatigue tests were carried out with the BSxGAB specimen that the bare plane(GAB) of monogalvanized steel sheet was spot welded to the double thickness bare steel sheet(BS), and with the GAxGAB specimen that the galvanized plane (GA) was spot welded to the equal thickness bare plane (GAB) 1. The relation between maximum stress intensity factor, K sub(max) and the number of cycles to failure, N sub(f) has shown a linear relation on log-log plot in the spot weld of the zinc galvanized steel sheet. 2. The fatigue strength of BSxGAB specimens is about 23% higher than that of GAxGAB specimens at the fatigue strength of $1\times10^6$ cycles. And the fatigue life of BSxGAB specimens at the same load range increases 6~9 times higher than that of GAxGAB specimens. 3. The general tendency at the angle of bending($\theta$) in an applied load has changed rapidly at the initial 20% of its life. After then, it has changed slowly. The change at the angle of bending has increased linearly as the load range increases. 4. It has shown a linear relation between the location ratio of initiation ${\gamma}$ and fatigue life $N_f$ on the semi-log graph paper. Here $\gamma$ means that the crack distance between main crack and sub-crack, 2L is divided by the nugget diameter, 2r. $\gamma=a{\cdot}log N_f+n$ (where a and n are material constant.)

  • PDF

마찰교반점용접을 이용한 이종재료의 접합 (Friction spot joining of dissimilar materials)

  • 천창근;김특기;;김흥주;장웅성
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.155-157
    • /
    • 2007
  • The Friction spot dissimilar welding of galvanized steel/Al6061-T6 was performed to investigate the mechanical characteristics of the joints. The presence of thin film of aluminum oxide on the surface and melting of zinc in the coating, made substandard joint characteristics for dissimilar Friction spot joining(FSJ) performed with out removing the coating. Where as, for dissimilar FSJ of galvanized steel/Al6061-T6 after removing the coating, superior agitation and welding quality has been obtained for a configuration of galvanized steel as the upper plate and Al6061-T6 as lower plate. The results from tensile tests and microscopic examination for various combinations of the welding parameters have been presented.

  • PDF

Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh

  • Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.253-263
    • /
    • 2019
  • The efficacy of a galvanized steel wire mesh (GSWM) as an alternative material for the rehabilitation of RC beam-column connections damaged due to reversed cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged zone and then confined using three types of locally available GSWM mesh. The mesh types used herein are (a) Weave type square mesh with 2mm grid opening (GWSM-1) (b) Twisted wire mesh with hexagonal opening of 15 mm (GSWM-2) and (c) welded wire mesh with square opening of 25 mm (GSWM-3). A reduced scale RC beam-column connection detailed as per ductile detailing codes of Indian Standard was considered for the experimental investigation. The rehabilitated specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using GSWM-1 significantly enhanced the seismic capacity of the connections.