• 제목/요약/키워드: Galvanic potential

검색결과 96건 처리시간 0.022초

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

  • Seo, Bosung;Song, Kuk Hyun;Park, Kwangsuk
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1232-1240
    • /
    • 2018
  • Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

아연-황동관에 의한 배관 부식 억제 효과에 관한 연구 (A Study on the Effect of Corrosion Prevention in Water Distribution System by Galvanized Zinc-Brass Pipe)

  • 송승준;조영근;김진한
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.23-27
    • /
    • 2018
  • This research was carried out to investigate the corrosion prevention effect in the water distribution system by galvanized zinc-brass pipe which is using potential between brass and zinc. As a result of this study, pH and conductivity of influent were constant in spite of its installation, and it was difficult to estimate the effect of the installation with temporary increased and reduced concentration of Zn and Fe ions, respectively. However, since the corrosion rate of the steel coupon with galvanized zinc-brass pipe was relatively low, it has an effect of inhibiting corrosion.

이트리아를 함유한 지르코니아 고체전해질의 물리적, 전기적 특성 (Some Physical and Electrical Properties of Zirconia Solid Electrolyte Contained Yttria)

  • 정형진;오영제
    • 한국세라믹학회지
    • /
    • 제23권1호
    • /
    • pp.13-20
    • /
    • 1986
  • Zirconia soild electrolytes containing 4~10mol% of yttria were prepared by wet-blending of oxides and rea-ction-sintering, Sinterbility and degree of stabilization were optimized for the development of oxygen sensor. Fracture strength thermal expansion coefficient electrical conductivity and galvanic potential were measured and discussed with respect to the amount of ytria addition phase transformation microstructure and degree of stabilization. It was found that sintering and stabilization occurred when the composition was designed to be near the boundary region of $ZrO_2-Y_2O_3$ binary system. In such away a good zirconia solid electrolyte suitable for oxygen sensor could be developed.

  • PDF

탄화규소/7091알루미늄 복합재료의 부식거동 (Corrosion Behavior of Silicon Carbide/7091 Aluminum Matrix Composites)

  • 강우승
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.108-111
    • /
    • 2012
  • The effects of volume fraction (15-30%) of SiC particulate reinforcements on the corrosion behavior of SiCp/7091 Al composites in the 3.5% NaCl solution were studied by electrochemical techniques and scanning electron microscopy. The results showed that the amount of SiC particulate reinforcements did not cause much difference in the corrosion behavior of SiCp/7091 Al composites but the corrosion rate was proportional to the amount of SiCp reinforcement. And numerous pits and severe dissolution of the matrix was observed probably due to the discontinuities and galvanic effects between Al matrix and SiC reinforcements.

Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review

  • Kannan, M. Bobby
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.54-57
    • /
    • 2016
  • Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.

마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성 (Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques)

  • 김규섭;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.

송배전용 Al-Cu 접속금구의 신뢰도 향상에 관한 연구(II) 압축형 및 폭발용접형 접속금구의 내식성 비교 (Study on the Improvement of the Reliability of Al-Cu Connections in Power Distribution Systems(II))

  • 하윤철;배정효;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.370-372
    • /
    • 2003
  • As there expands the usage of Al-Cu connections to interface aluminum and copper in power distribution systems, efforts to mitigate the mechanical, electrical or electro-chemical degradation are widely spreading. The explosive bending technology, in particular, has been thought as a countermeasure for the degradation. In this paper, electrochemical analysis and optical microscopic observation are carried out in order to compare the corrosion resistivities of the commercial compression type bimetallic sleeve and the explosion type bimetallic sleeve. The results show that the explosive bonding technology can prevent the interfacial corrosion caused by the formation of crevices and pits as well as from galvanic potential difference.

  • PDF

마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과 (Effects of Aging on Properties of MgO-Partially Stabilized Zirconia)

  • 정형진;오영제;이홍림
    • 한국세라믹학회지
    • /
    • 제24권3호
    • /
    • pp.243-250
    • /
    • 1987
  • 9mol% 의 MgO로 $1650^{\circ}C$에서 4시간 고상반응과 동시에 소결시킨 부분안정화 지르코니아 소결체(9MZ-PSZ)를 소성후 냉각중 $1200^{\circ}C$~$1400^{\circ}C$의 온도범위에서 열처리하여 이의 열분해 반응, 열충격기등 및 기전력 특성에 대하여 조사하였다. 열충격시럼 전과 후의 강도, 열팽창률, X-선 회절분석에 의한 단사정사 함률과 상전이, 밀도 및 갈바닉 전위를 측정하였으며 SEm에 의한 미세구조를 관찰하였다. 입체부근의 미소화학분석은 $1350^{\circ}C$ 열처리 시편에 한하여 EDX 로 정량하였다. 9MZ-PSZ 시편의 열처리에 의하여 입방정상의 $ZrO^{2}$는 상기 온도범위에서는 준안정-정방정상의 $ZrO^{2}$와 MgO로 열분해되는데, 이때 생성된 준안정 정방정상은 열충격 시험후의 잔류강도를 응력유기상전이 효과에 의해 증가시킨다. 또한 MgO는 입계에 연속적으로 존재하는데 이런하 MgO의 연속상을 통한 열전도롤 인하여 PSZ의 열충격 저항이 크게 향상된다. 이때 PSZ의 열분해 속도와 단사정상 함량은 열처리 온도가 $1400^{\circ}C$에서 $1200^{\circ}C$로 감소됨에 따라 증가한다. 갈바닉전의 측정결과 이상의 열처리에 의하여도 양호한 기전력 특성을 갖는 지르코니아 고체전해질을 제조할 수 있다.

  • PDF

부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구 (A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment)

  • 송하원;이창홍;이근주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권1호통권53호
    • /
    • pp.97-105
    • /
    • 2009
  • 건설산업에서 혼합콘크리트의 개발 및 사용은 내구성 측면에서의 공극구조개선 및 투수성 감소등의 확장 연구를 통해 나날이 증가하고 있는 실정이다. 한편, 콘크리트내의 균열은 투수성, 염해 침투속도 및 압축강도등을 결정하는 중요한 인자이며, 이는 철근의 부식과도 밀접한 관련을 가지는 것으로 알려져 있다. 더욱이 콘크리트 구조물의 피복두께에 균열이 발생한 경우, 이를 통해 철근 부식이 가속화됨은 주지의 사실이다. 최근에 콘크리트내의 침투를 고려한 균열효과와 관련하여 다수의 연구가 수행되어져 온 것이 사실이며, 그에 따라 내구성을 고려한 균열 혼합콘크리트의 사용수명 평가에 관한 연구도 필요한 것이 사실이다. 본 연구에서는 0.3mm의 균열을 변수로 두고, OPC, 30% PFA, 60% GGBS 및 10% SF의 결합재를 혼입하여 사용한 혼합콘크리트보의 부식평가를 자연 및 인공 환경조건에 맞추어 반전지전위측정시험, 갈바닉전류측정시험, 무게감량법등으로 측정 및 비교분석하였다.